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Abstract
Data mining is the task of extracting meaningful information, i.e., patterns
and new knowledge, from massive data. Data mining finds application in sev-
eral domains, ranging from, e.g., e-commerce, social networks, and Internet
of Things, to medicine and biology. In this Thesis we focus on the analy-
sis of a specific type of data, i.e., sequential data, that are data composed
of elements with an underlying intrinsic sequential nature among them. In
particular, we study large datasets of sequential transactions, i.e., sequences
of sets of items, where the items can represent, e.g., objects purchased by
customers, and large datasets of k-mers, which are substrings of length k of
a biological sequence. In data mining, there are two ways in which a dataset
can be considered. In the first scenario, the dataset is considered as a sample

drawn from the unknown generative process underlying the data, and it is
studied to gain insights about the generative distribution. In the second sce-
nario, the most common one in data mining, the dataset is studied in order
to extract meaningful patterns that reside in it. In this Thesis we consider
both knowledge discovery approaches.

For the first scenario, we study datasets of sequential patterns in order
to gain insights about their unknown generative process. The problem we
consider is to mine the true frequent sequential patterns, which are those se-
quential patterns that are frequently generated by the generative process of
the data. Since exact approaches are infeasible, given that the generative
distribution is unknown, we propose algorithms to mine rigorous approxima-
tions of the true frequent sequential patterns (and their frequencies). Our
algorithms are based on theoretical results that guarantee that their outputs
are high-quality approximations, leveraging on the study of the Rademacher

complexity, an advanced tool from statistical learning theory, of sequential
patterns. We show the effectiveness of our algorithms with our extensive
experimental evaluation on several real world datasets.

For the second scenario, we study datasets representing biological se-
quences in order to mine meaningful k-mers residing in them. The problem
we consider is to mine frequent k-mers, which are those k-mers that appear
with a relatively high frequency in the dataset. Exact approaches to extract
frequent k-mers exist, but they require high computational resources to an-
alyze large datasets. Thus, we propose SPRISS, a sampling-based algorithm
to rigorously approximate frequent k-mers, proving rigorous guarantees on
the quality of its output. Our sampling scheme is based on the creation of a
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sample of reads, which is analyzed in order to gain insights about the original
dataset. For our theoretical analysis, which provides the sample size required
to obtain accurate estimates from SPRISS, we study the pseudodimension,
an advanced concept from statistical learning theory, of k-mers in reads. We
show the effectiveness of SPRISS with our extensive experimental evaluation
on several real world datasets. Finally, we show that SPRISS can be used
in several bioinformatics applications, like the comparison of metagenomic
datasets, the discovery of discriminative k-mers, and the SNP genotyping,
in order to speed-up the down-stream analyses, while achieving high-quality
estimations of the exact results.
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Chapter 1

Introduction

Data mining is the task of extracting meaningful information from massive
data. Nowadays, the generation of large amount of data is a consolidated
practice in many domains: e-commerce, for example, has given a lot of im-
portance to the market basket analysis, where a huge number of purchasing
behaviours of customers can be analyzed to inform retailers on how to raise
their sales by adopting ad hoc marketing and recommendations; Social net-

works virtually connect people around the world providing massive data that
are useful to understand, for example, how groups of people interact and how
people react to information shared on the network; Internet of Things (IoT)
provides enormous quantity of data about the internet interconnections of de-
vices, which can be analyzed to improve the management and performances
of IoT systems; In medicine, tons of data about patients are collected, whose
statistical and computational analysis can help, for example, to improve med-
ical diagnosis and to adopt specific intervention to prevent or treat a disease;
In biology, the recent impressive improvement of next-generation sequencing
machines has given the possibility to analyze massive datasets storing DNA
sequences in order to, for example, identify the mutations that drive cancers.
The domains mentioned above are just some examples of the many where
data mining techniques find application to discover patterns and new knowl-
edge. The simultaneous growth of the technologies generating big data and
of the effort of data mining research communities can truly lead to discover
patterns, i.e., rules describing the data, and new knowledge.

In this Thesis we focus on the analysis of a specific type of data, i.e.,
sequential data, that are data composed of elements with an underlying in-
trinsic sequential nature among them. In particular, we study two types of
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CHAPTER 1. INTRODUCTION

sequential data, i.e., sequential patterns and k-mers. A sequential pattern
is a sequence of sets of items (i.e., itemsets), where items can represent, for
example, objects purchased by customers in a website store, or events asso-
ciated to actions of the users of a website. A k-mer, instead, is a substring
of length k of a sequence, as generated, for example, by high-throughput
sequencing experiments. Studying sequential patterns helps, for example,
to identify customers and users behaviour, while studying k-mers helps, for
example, to understand the structure of biological sequences.

In data mining, there are two ways in which a dataset can be considered.
In the first scenario, the dataset is considered as a sample drawn from the
unknown generative process underlying the data: the dataset can be studied
to gain insights about the unknown distribution that generates the data. In
the second scenario, instead, the dataset is studied in order to extract mean-
ingful patterns that reside in it. In this Thesis we consider both knowledge
discovery approaches: we study the unknown generative process of sequential
patterns to identify meaningful patterns, and we study biological sequences
to identify k-mers that are meaningful for the datasets analyzed. The no-
tion of meaningfulness for patterns depends on the type of patterns and the
specific data mining task. Now we describe the contributions of this Thesis,
specifying the measures of meaningfulness for each data mining task and type
of patterns considered.

In Chapter 3 we study datasets of sequential patterns in order to gain in-
sights about their unknown generative process. In this scenario, we say that
the dataset is composed of transactions, that are independent and identically

distributed (i.i.d.) samples from the unknown generative process underlying
the data (thus, transactions are sequential patterns). In this context, we
consider the true frequency of sequential patterns as the measure of mean-
ingfulness of patterns. Informally, the true frequency of a sequential pattern
P is the probability that a transaction sampled from the unknown generative
process contains P . The problem we consider is to mine the true frequent

sequential patterns, which are those sequential patterns that are frequently
generated by the generative process, given a user-defined minimum frequency
threshold. Exact approaches to mine true frequent sequential patterns (and
their true frequency) are infeasible, since the underlying generative process
is unknown. In addition, the observed frequencies of the sequential patterns
in the dataset only approximately reflect the true frequencies. Consequently,
one has to resort to approximation methods by analyzing datasets of trans-
actions sampled from the unknown distribution. In this Thesis we define two
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rigorous approximations of the true frequent sequential patterns, one without
false negatives and one without false positives. Then, we present algorithms
that output rigorous approximations of the set of true frequent sequential
patterns containing, with high probability, no false positives or false nega-
tives. Our algorithms are based on theoretical results that guarantee that
their outputs are high-quality approximations. Our theoretical analysis is
based on the study of the Rademacher complexity, an advanced tool from
statistical learning theory, of sequential patterns. In particular, we provide
an efficient computable upper bound on the Rademacher complexity, together
with a strategy to approximate it. Finally, we describe our extensive exper-
imental evaluation studying real world datasets of transactions from several
domains, showing that our algorithms provide high-quality approximations
of the set of true frequent sequential patterns. To the best of our knowledge,
there is no method to approximate true frequent sequential patterns. The
contributions described in Chapter 3 appear in [Santoro et al., 2020].

In Chapter 4 we study datasets representing biological sequences. In
particular, the dataset D is a finite bag of reads, where a read, which is
generated by high-throughput sequencing experiments, represents a portion
of a biological sequence. A k-mer K is a substring of length k of a read,
and its frequency in a dataset D is the fraction of times K appears in D. In
this scenario, we consider the frequency of k-mers as the measure of mean-
ingfulness of patterns. The problem we consider in Chapter 4 is to mine
frequent k-mers, which are those k-mers that appear with a relatively high
frequency in the dataset, given a user-defined minimum frequency thresh-
old. Exact approaches to solve this problem exist, but their executions on
large datasets are still highly demanding in terms of computational resources.
Thus, efficient approximation methods are to be sought. A natural approach
to speed-up the computation of frequent k-mers is to analyze only a sample

of the data, instead of the entire dataset D. This is motivated by the fact
that frequent k-mers of D appear with high probability in the sample, and,
instead, infrequent k-mers appear with lower probability. In this Thesis we
present SPRISS, a sampling-based algorithm to rigorously approximate fre-
quent k-mers, proving rigorous guarantees on the quality of its output. Our
sampling scheme is based on the creation of a sample of reads. To the best of
our knowledge, there is no method to rigorously approximate frequent k-mers
by sampling reads. Our theoretical analysis provides the sample size which is
required to obtain accurate estimates from SPRISS. To prove our theoretical
results we study the pseudodimension, an advanced concept from statistical
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CHAPTER 1. INTRODUCTION

learning theory, of k-mers in reads, showing that less sophisticated tools like
Hoeffding’s inequality combined with a union bound, and the VC-dimension,
fails to provide practical sample sizes. Finally, we describe our extensive
experimental evaluation studying real world datasets of reads, showing that
SPRISS outputs high-quality approximations of frequent k-mers by only an-
alyzing small samples, while speeding-up the computation with respect to
the exact approaches. The contributions described in Chapter 3 appear in
[Santoro et al., 2021] as conference version, and in [Santoro et al., 2022] as
journal version.

In Chapter 5 we describe our experiments to show how SPRISS can be
used in bioinformatics to speed-up the analysis of datasets of biological se-
quences. Several applications, e.g., comparison of datasets and reads classi-
fication in metagenomics, genome comparison, error correction for genome
assembly, and many others, heavily depend on the identification of k-mers
and their frequencies. In this Thesis, we use SPRISS to speed-up applica-
tions that rely on the identification of frequent k-mers. In particular, we
evaluate the usage of SPRISS in the comparison of metagenomic datasets,
using SPRISS’s approximations to estimate abundance based distances be-
tween them. Then, we test SPRISS in the discovery of discriminative k-mers
between pairs of metagenomic datasets. Finally, we combine the sampling
scheme of SPRISS with state of the art genotyping algorithms to approximate
SNP genotyping. For all these three applications of SPRISS, our extensive
experimental evaluation shows that SPRISS is able to speed-up the down-
stream analyses, while achieving high-quality estimations of the exact results.
The contributions about the application of SPRISS to compare metagenomic
datasets and to discover discriminative k-mers appear both in [Santoro et al.,
2021] as conference version and in [Santoro et al., 2022] as journal version,
while the application of SPRISS to approximate SNP genotyping appear only
in the journal version [Santoro et al., 2022].

The rest of this Thesis is organized as follows. In Chapter 2 we intro-
duce some preliminary definitions and concepts used throughout this Thesis.
Then, in Chapter 3 we present our theoretical analysis and experimental re-
sults of our algorithms to rigorously approximate the true frequent sequential
patterns. In Chapter 4 we present our theoretical analysis and experimental
results of SPRISS, our algorithm for the rigorous approximation of frequent
k-mers by sampling reads. Next, in Chapter 5 we present our extensive ex-
perimental evaluation of the application of SPRISS to compare metagenomic
datasets, to compute discriminative k-mers, and to SNP genotyping. Finally,
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in Chapter 6 we end this Thesis with some final considerations.
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Chapter 2

Background

In this chapter we introduce some preliminary definitions and concepts that
will be useful for the rest of this Thesis, and we give a preliminary overview
about previous works. The detailed presentations of previous works about
our novel contributions are reported in the respective chapters. In Section 2.1
we introduce the two types of pattern mining problem studied in this Thesis,
i.e., frequent pattern mining and true frequent pattern mining, whose goals
are, respectively, to mine patterns that appear with high frequency in a set
of data, and to mine patterns that are frequently generated by the process
generating the data. Then, in Section 2.2 we introduce the fundamental
concept of maximum deviation, over all possible patterns, of the actual fre-
quency and its estimate, describing it for both pattern mining scenarios stud-
ied in this work. Finally, in Section 2.3 we introduce the VC-dimension and
the Rademacher complexity, two fundamental concepts of statistical learning
theory that are useful to obtain probabilistic upper bounds to the maximum
deviation and to derived rigorous approximations of the frequent patterns
and the true frequent patterns.

2.1 Pattern Mining
The goal of pattern mining is to find meaningful patterns, i.e. rules describing
patterns in the data, for a given measure of meaningfulness which depends
on the specific knowledge discovery task. Pattern mining finds applications
in several domains, ranging, e.g., from market basket analysis to network
analysis, and from biology to medicine.
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CHAPTER 2. BACKGROUND

Let p 2 U be a generic pattern, where U is the universe of all patterns.
We define the dataset D as a finite bag of n = |D| points that corresponds
to elements of the universe U: D = {s1, . . . , sn}, where si 2 U. In pattern
mining strategies, the dataset D is analyzed to extract those patterns of U
that are of interest for the specific task. For example, two types of patterns
that have been extensively studied are itemsets (i.e. sets of items) [Agrawal
et al., 1993], and sequential patterns (i.e. sequences of itemsets) [Agrawal
and Srikant, 1995].

Now we introduce two types of pattern mining tasks that are of interest
for this Thesis: frequent pattern mining (Section 2.1.1) and true frequent
pattern mining (Section 2.1.2) .

2.1.1 Frequent Pattern Mining

Frequent pattern mining is a fundamental task in data mining and knowledge
discovery. In the frequent pattern mining scenario, the measure of meaning-
fulness of patterns is the frequency in which they appear in the dataset D.
The goal of frequent pattern mining is to identify those patterns that ap-
pear in a sufficient high portion of the data, i.e. with high frequency. The
frequent pattern mining task has been extensively studied for several types
of pattern using different efficient algorithms to mine frequent patterns from
large amount of data [Han et al., 2007].

The specific definition of the frequency fD(p) of a pattern p in D can differ
depending on the specific contexts and applications. However, in this Thesis,
if not stated otherwise, the frequency fD(p) of a pattern p in a dataset D is
defined as follows.

Definition 1. Given a dataset D and a pattern p, the support set TD(p) of

p in D is the set of points in D that contain p. The support SuppD(p) of p

in D is the cardinality of the support set TD(p): SuppD(p) = |TD(p)|. The

frequency fD(p) of p in D is the fraction of points in D to which p belongs:

fD(p) =
SuppD(p)

|D| . (2.1)

The frequent pattern mining problem is defined as follows.

Definition 2. Given a minimum frequency threshold ✓ 2 (0, 1] and a dataset

D, we are interested in finding the set FP (D, ✓) of frequent patterns in D

8



2.1. PATTERN MINING

with respect to (w.r.t.) ✓, i.e.,

FP (D, ✓) = {(p, fD(p)) : p 2 U, fD(p) � ✓}. (2.2)

Algorithms solving this problem typically requires access to the entire
dataset D, which is really impractical in big data contexts where D can be
very large. In addition, the complex structure that forms the patterns makes
often difficult to handle them in an efficient way, leading the exact compu-
tation of FP (D, ✓) to be infeasible in practice. Thus, one has to resort to
some efficient approaches to compute an approximation of the set FP (D, ✓)
of frequent patterns. Now we formally define the approximations of FP (D, ✓)
that are of interest for this Thesis. In particular, we consider the rigorous
approximation of FP (D, ✓) known as "-approximation, for a given accuracy
parameter " 2 (0, 1). Here we present the definition of "-approximation for
general patterns, instead Definition 1 of [Riondato and Upfal, 2015] defines it
for itemsets (i.e., sets of items), and Definition 2 of [Servan-Schreiber et al.,
2018] defines it for sequential patterns (i.e., sequences of itemsets).

Definition 3. Given " 2 (0, 1), an "-approximation C of FP (D, ✓) is defined

as a set of pairs (p, fp):

C = {(p, fp) : p 2 U, fp 2 [0, 1]} (2.3)

that has the following properties:

• C contains a pair (p, fp) for every (p, fD(p)) 2 FP (D, ✓);

• C contains no pair (p, fp) such that fD(p) < ✓ � ";

• for every (p, fp) 2 C, it holds |fD(p)� fp|  "/2.

Intuitively, the approximation C contains all the frequent patterns that
are in FP (D, ✓) (i.e., there are no false negatives) and no pattern that has
frequency in D much below ✓. In addition, C provides a good approximation
of the actual frequency of the pattern in D, within an error "/2, arbitrarily
small. Since the definition of the approximation set C in Definition 3 ensures
that there are no false negatives, in This thesis, where necessary, we call C
a false negatives free (FNF) "-approximation of FP (D, ✓).

9



CHAPTER 2. BACKGROUND

2.1.2 True Frequent Pattern Mining

In addition to frequent pattern mining, several types of pattern mining has
been studied by considering different measure of meaningfulness for the pat-
terns: significant pattern mining [Hämäläinen and Webb, 2019], high-utility
pattern mining [Fournier-Viger et al., 2019], and true frequent pattern mining
[Riondato and Vandin, 2014]. In particular, Riondato and Vandin [Riondato
and Vandin, 2014] proposed to mine true frequent itemsets, which are sets of
items generated with high probability by the unknown generative process un-
derlying the data, by employing the empirical VC-dimension, a fundamental
concept of statistical learning theory, of itemsets.

In several applications, the dataset D is a sample of independent and
identically distributed points drawn from an unknown probability distribu-
tion ⇡, with ⇡ : U! [0, 1]. The true frequency t⇡(p) of pattern p w.r.t. ⇡ is
defined as follows.

Definition 4. Consider an unknown probability distribution ⇡ : U ! [0, 1].
For any pattern p 2 U, we define the true support set T (p) of p as the set

of patterns in U to which p belongs: T (p) = {⌧ 2 U : p 2 ⌧}. In the true

frequent pattern mining scenario, we define the true frequency t⇡(p) of p

w.r.t. ⇡ as the probability that a point sampled from ⇡ contains p:

t⇡(p) =
X

⌧2T (p)

⇡(⌧). (2.4)

In this scenario, the final goal of the pattern mining process on D is to
gain a better understanding of the process generating the data, that is, of the
distribution ⇡, through the true frequencies t⇡, which are unknown and only
approximately reflected in the dataset D. The true frequent pattern mining

problem is defined as follows.

Definition 5. Consider an unknown probability distribution ⇡ : U ! [0, 1].
Given a minimum frequency threshold ✓ 2 (0, 1], we are interested in finding

the set TFP (⇡, ✓) of true frequent patterns with true frequency t⇡ at least ✓:

TFP (⇡, ✓) = {(p, t⇡(p)) : p 2 U, t⇡(p) � ✓}. (2.5)

Note that, given a finite number of random samples from ⇡ (e.g., the
dataset D), it is not possible to find the exact set TFP (⇡, ✓), and one has
to resort to approximations of TFP (⇡, ✓). The definition of specific types
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2.2. MAXIMUM DEVIATION

of approximation sets of TFP (⇡, ✓) under a specific type of patterns, i.e.,
sequential patterns, without false positives or without false negatives, and
efficient methods to mine them will be presented as contributions of this
Thesis in Chapter 3.

2.2 Maximum Deviation
In the approximate frequent pattern mining and true frequent pattern mining
problems we aim to find good estimates of the actual frequencies. Now we
introduce the fundamental concept of maximum deviation, over all patterns
in U, between the actual frequency and its estimate. Note that a small value
for the maximum deviation typically leads to high quality approximations of
the patterns of interest.

Let M be a probability distribution over a domain set Z. Let F be a set
of functions that go from Z to [�1, 1]. Given a function f 2 F , we define
the expectation of f as:

E(f) = Ez⇠M[f(z)], (2.6)

and, given a sample Z of n observations z1, . . . , zn drawn from M, the em-
pirical average of f on Z as:

E(f, Z) =
1

n

nX

i=1

f(zi). (2.7)

The maximum deviation D(F , Z) is defined as the largest difference between
the expectation of a function f and its empirical average on sample Z as:

D(F , Z) = sup
f2F

|E(f)� E(f, Z)|. (2.8)

We now use the maximum deviation to capture quantities of interest for
the two mining tasks we consider in this Thesis.

In the frequent pattern mining scenario, we aim to find good estimates
for fD(p) for each pattern p. The frequency fD(p) is the expectation of a
Bernoulli random variable (r.v.) XD(p, s) which is 1 if the pattern p appears
in a point s drawn uniformly at random from D:

Es⇠D[XD(p, s)] = Pr
s⇠D

(XD(p, s) = 1) = SuppD(p)/|D| = fD(p). (2.9)
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CHAPTER 2. BACKGROUND

A natural approach to approximate the frequency of patterns of the
dataset D is to only analyze a small portion of it, i.e. a sample. Let S
be a sample of points drawn uniformly and independently at random from
D. We define the frequency fS(p) of pattern p in a sample S as the fraction
of points of S where p appears. Note that fS(p) is an empirical average (over
the points in S) and its expectation is E[fS(p)] = fD(p). Thus, the maximum
deviation is:

sup
p2U

|fD(p)� fS(p)|. (2.10)

In the true frequent pattern mining scenario, we aim to find good esti-
mates for t⇡(p) for each pattern p. Note that the true frequency t⇡(p) is the
expectation of a Bernoulli r.v. which is 1 if the pattern p appears in a point
drawn from ⇡, and that the observed frequency fD(p) is an empirical aver-
age (over the points in D). Moreover, it is easy to prove that the observed
frequency fD(p) of a pattern p in a dataset D of points drawn from ⇡ is an
unbiased estimator for t⇡(p), that is: E [fD(p)] = t⇡(p). Thus, the maximum
deviation is:

sup
p2U

|t⇡(p)� fD(p)|. (2.11)

Intuitively, small values for the maximum deviations of equations 2.10 and
2.11 imply that, for every pattern p, the actual frequency is well approximated
by its estimate. Bounding the maximum deviation D(F , Z)  µ (for a
factor µ 2 (0, 1)), which is also known as uniform convergence, implies that
simultaneously all the estimates are uniformly close to the actual frequencies
within the factor µ. As we will see in the next chapters, finding a small
upper bound to the maximum deviation is strictly correlated in finding good
approximations of frequent patterns and true frequent patterns.

In the next section, we see tools from statistical learning theory, e.g., VC-
dimension [Vapnik and Chervonenkis, 2015, Mitzenmacher and Upfal, 2017]
and Rademacher Complexity [Boucheron et al., 2005, Shalev-Shwartz and
Ben-David, 2014], that are useful to compute probabilistic upper bounds to
the maximum deviation, i.e., Pr(D(F , Z)  µ) � 1� �, for some confidence
parameter � 2 (0, 1).
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2.3 Statistical Learning Theory
Statistical learning theory [Vapnik, 1999] is an important branch of machine
learning that provides tools to derive probabilistic guarantees on the perfor-
mances of learning algorithms. In this section, we introduce fundamental
concepts of statistical learning theory, like VC-dimension and Rademacher
complexity, that are useful to compute probabilistic upper bounds to the
maximum deviation D(F , Z) = supf2F |E(f)� E(f, Z)| (see Equation 2.8).

In this section we present the VC-dimension and Rademacher Complex-
ity in a general setting. Instead, in Chapter 3 we present the Rademacher
complexity of sequential patterns in the true frequent pattern mining sce-
nario, and in Chapter 4 we present the VC-dimension and pseudodimension,
an advanced statistical learning tool which is be based on the VC-dimension,
of k-mers in the frequent pattern mining scenario. The connection between
such tools and the probabilistic bounds on the maximum deviations (Equa-
tion 2.10 and Equation 2.11) will be presented in Chapter 3 for the true
pattern mining scenario and in Chapter 4 for the frequent pattern mining
scenario.

As stated in the previous section, a natural approach to approximate fre-
quent patterns of a dataset D is to only analyze a sample S of D. Sampling

is a general fundamental technique of statistical data analysis and machine
learning which is useful to estimate proprieties of a domain by just analyze a
small portion of it. A crucial challenge in sampling techniques is to identify
the sample complexity of the problem, i.e., the sample size which is enough to
obtain the required quality of the results with rigorous guarantees [Mitzen-
macher and Upfal, 2017]. In this Thesis we use sampling techniques for
mining frequent patterns, and, in particular, to approximate frequent k-mers
from a dataset of reads, by studying the VC-dimension and pseudodimension
of k-mers.

2.3.1 VC-dimension

The VC-dimension (Vapnik-Chervonenkis dimension) [Vapnik and Chervo-
nenkis, 2015] is a measure of the complexity or expressiveness of a family
of indicator functions or, equivalently, of a family of subsets defined on a
space of points. The presentation below follows the one in [Mitzenmacher
and Upfal, 2017].

The definition of the VC-dimension follows.

13
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Definition 6. We define Q = (X,R) as a range space, where X is a finite

or infinite domain of points, and R is the range set, i.e., a family of subsets

of X. The members r 2 R of the range set R are called ranges. Given

N ✓ X, the projection of R on N is projR(N) = {r \ N : r 2 R}. If

|projR(N)| = 2|N |
then we say that N is shattered by R. The VC-dimension

V C(Q) of Q is the maximum cardinality of a subset of X shattered by R.

Note that to prove that V C(Q) = v, the following conditions need to
hold: (a) there exists a set N ✓ X of size v that is shattered; (b) every set
N ✓ X of size v+1 is not shattered. If there exist arbitrary large subsets of
X that can be shattered, then V C(Q) =1.

The main application of the VC-dimension is to derive the sample size
which is enough to approximately learn the ranges, as defined below.

Definition 7. Let X be a finite or infinite domain of points. Given a finite

bag N ✓ X, and an accuracy parameter " 2 (0, 1], a bag B of elements drawn

uniformly at random from N is an "-bag of X if for every range r 2 R holds:

����
|X \ r|
|X| � |B \ r|

|B|

����  "/2. (2.12)

The following theorem from [Mitzenmacher and Upfal, 2017] relates the
accuracy parameter " with the probability that a bag B ✓ N of size m is an
"-bag for a range space Q of VC-dimension V C(Q) at most v.

Theorem 1. [Mitzenmacher and Upfal, 2017] There is an absolute posi-

tive constant c such that if Q = (X,R) is a range space of VC-dimension

V C(Q)  v, N ✓ X is a finite bag, and ", � 2 (0, 1), then a bag B of m

elements drawn with independent random extractions with replacement from

N , with

m � c

"2

✓
d+ ln

1

�

◆
, (2.13)

is an "-bag of X with probability � 1� �.

The universal constant c has been experimentally estimated to be at most
0.5 [Löffler and Phillips, 2009].

As we can see from the previous theorem, the VC-dimension is a funda-
mental tool of learning theory which provides a way to derive the sample
size needed to learn an approximation of the ranges, which are typically
associated to patterns and their frequencies. In Chapter 4 we study the
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VC-dimension and the pseudodimension, an advanced tool based on the VC-
dimension, in the frequent pattern mining scenario.

2.3.2 Rademacher Complexity

A key quantity from statistical learning theory to study and derive an upper
bound of the maximum deviation of Equation 2.8 is the Rademacher complex-

ity [Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014], which is a
tool to measure the complexity of a family of real-valued functions. Bounds
based on the Rademacher complexity depend on the distribution of the data,
differently from the ones based on VC-dimension that are distribution inde-
pendent.

The Rademacher complexity, which is defined below, is a measure of the
expressiveness of a set Y of real-valued functions.

Definition 8. Let D be a dataset of n points D = {s1, . . . , sn}. For each

i 2 {1, . . . , n}, let �i be an independent Rademacher random variable (r.v.)

that takes value 1 or �1, each with probability 1/2. Let Y be a set of real-

valued functions. The empirical Rademacher complexity RD on D is defined

as follows:

RD = E�

"
sup
g2Y

1

n

nX

i=1

�ig(si)

#
, (2.14)

where the expectation is taken w.r.t. the Rademacher r.v. �i’s.

Note that a specific combination of �’s represents a splitting of D into two
random sub-samples D1 and D�1: D1 consists of the points of D for which the
corresponding r.v. � = 1, while D�1 consists of the points of D for which the
corresponding r.v. � = �1. For a function g 2 Y ,

Pn
i=1 �ig(si)/n represents

the difference between E[g] over the two random sub-samples D1 and D�1.
By considering the expected value of the supremum of this difference over the
set Y , we get the empirical Rademacher complexity. Therefore the intuition
is that if RD is small, the dataset D is sufficiently large to ensure a good
estimate of E[g] for every g 2 Y .

In Chapter 3 we study the Rademacher complexity of sequential patterns,
which has not been explored before, providing efficient methods to both
approximate and bound it in the true frequent pattern mining scenario. This
will be crucial to upper bound the maximum deviation of Equation 2.11 and
to provide rigorous approximations of true frequent sequential patterns.
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Chapter 3

Mining True Frequent Sequential
Patterns with Rademacher
Complexity

3.1 Introduction
Sequential pattern mining [Agrawal and Srikant, 1995] is a fundamental
task in data mining and knowledge discovery, with applications in several
fields, from recommender systems and e-commerce to biology and medicine.
In its original formulation, sequential pattern mining requires to identify all
frequent sequential patterns, that is, sequences of itemsets that appear in a
fraction at least ✓ of all the transactions in a transactional dataset, where
each transaction is a sequence of itemsets. The threshold ✓ is a user-specified
parameter and its choice must be, at least in part, be informed by domain
knowledge. In general, sequential patterns describe sequences of events or
actions that are useful for predictions in many scenarios.

In several applications, the analysis of a dataset is performed to gain
insight on the underlying generative process of the data. For example, in
market basket analysis one is interested in gaining knowledge on the be-
haviour of all the customers, which can be modelled as a generative process
from which the transactions in the dataset have been drawn. In such a
scenario, one is not interested in sequential patterns that are frequent in the

dataset, but in sequential patterns that are frequent in the generative process,
that is, whose probability of appearing in a transaction generated from the
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process is above a threshold ✓. Such patterns, called true frequent patterns,
have been introduced by Riondato and Vandin [Riondato and Vandin, 2014],
which provides a Vapnik-Chervonenkis (VC) dimension based approach to
mine true frequent itemsets. While there is a relation between the prob-
ability that a pattern appears in a transaction generated from the process
and its frequency in the dataset, one cannot simply look at patterns with
frequency above ✓ in the dataset to find the ones with probability above ✓

in the process. Moreover, due to the stochastic nature of the data, one can-
not identify the true frequent patterns with certainty, and approximations
are to be sought. In such a scenario, relating the probability that a pattern
appears in a transaction generated from the process with its frequency in
the dataset using standard techniques is even more challenging. Hoeffding
inequality and union bounds require to bound the number of all the possible
sequential patterns that can be generated from the process. Such bound is
infinite if one considers all possible sequential patterns (e.g., does not bound
the pattern length). To the best of our knowledge, no method to mine true

frequent sequential patterns has been proposed.

3.1.1 Our Contributions

We study the true frequent sequential pattern mining problem, and we pro-
pose efficient algorithms based on the concepts of the Rademacher complex-
ity. In this regard, our contributions are:

• We define rigorous approximations of the set of true frequent sequential
patterns. In particular, we define two approximations: one with no
false negatives, that is, containing all elements of the set; and one with
no false positives, that is, without any element that is not in the set.
Our approximations are defined in terms of a single parameter, which
controls the accuracy of the approximation and is easily interpretable.

• We study the Rademacher complexity of sequential patterns, an ad-
vanced concept from statistical learning theory that has been used in
other mining contexts. We provide the first efficiently computable up-
per bound to the Rademacher complexity of sequential patterns. We
also show how to approximate the Rademacher complexity of sequen-
tial patterns. Thus, we provide efficient algorithms both to bound and
approximate the Rademacher complexity of sequential patterns.
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• We introduce efficient algorithms to obtain rigorous approximations of
the true frequent sequential patterns with probability 1� �, where � is
a confidence parameter set by the user. Our algorithms use the novel
bound and approximation of the Rademacher complexity that we have
derived, and they allow to obtain accurate approximations of the true
frequent sequential patterns, where the accuracy depends on the size
of the available data.

• We perform an extensive experimental evaluation analyzing several se-
quential datasets, showing that our algorithms provide high-quality
approximations, even better than guaranteed by their theoretical anal-
ysis.

3.1.2 Related Works

Since the introduction of the frequent sequential pattern mining problem
[Agrawal and Srikant, 1995], a number of exact algorithms has been proposed
for this task, ranging from multi-pass algorithms using the anti-monotonicity
property of the frequency function [Srikant and Agrawal, 1996], to prefix-
based approaches [Pei et al., 2004], to work focusing on the closed frequent
sequences [Wang et al., 2007].

The use of sampling to reduce the amount of data for the mining pro-
cess while obtaining rigorous approximations of the collection of interesting
patterns has been successfully applied in many mining tasks. Raïssi and
Poncelet [Raïssi and Poncelet, 2007] provided a theoretical bound on the
sample size for a single sequential pattern in a static dataset using Hoeffding
concentration inequalities, and they introduced a sampling approach to build
a dynamic sample in a streaming scenario using a biased reservoir sampling.
Our work is heavily inspired by the work of Riondato and Upfal [Riondato
and Upfal, 2015], which introduced advanced statistical learning techniques
for the task of frequent itemsets mining. In particular, Riondato and Up-
fal [Riondato and Upfal, 2015] proposed a progressive sampling approach
based on an efficiently computable upper bound on the Rademacher com-
plexity of itemsets. Rademacher complexity has also been used in graph
mining [Al Hasan et al., 2007, Corizzo et al., 2019, Cheng et al., 2010], to
design random sampling approaches for estimating betweenness centralities
in graphs [Riondato and Upfal, 2018], and to bound the family-wise error
rate in local causal discovery [Simionato and Vandin, 2022].
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To the best of our knowledge, [Riondato and Vandin, 2014] is the only
work that considers the extraction of frequent patterns w.r.t. an underly-
ing generative process, based on the concept of empirical VC-dimension of
itemsets. While we use the general framework introduced by Riondato and
Vandin [Riondato and Vandin, 2014], the solution proposed by them requires
to solve an optimization problem that is tailored to itemsets and, thus, not
applicable to sequential patterns; in addition, computing the solution of such
problem could be relatively expensive.

[Pellegrina et al., 2019] considers the problem of mining significant pat-
terns under a similar framework, making more realistic assumptions on the
underlying generative process compared to commonly used tests (e.g., Fisher’s
exact test). Several works have been proposed to identify statistically signif-
icant patterns where the significance is defined in terms of the comparison
of patterns statistics. Few methods [Gwadera and Crestani, 2010, Low-Kam
et al., 2013, Tonon and Vandin, 2019] have been proposed to mine statisti-
cally significant sequential patterns. These methods are orthogonal to our
approach, which focuses on finding sequential patterns that are frequent w.r.t.
an underlying generative distribution.

3.1.3 Organization of the Chapter

The rest of the Chapter is organized as follows. In Section 3.2 we introduce
some preliminary concepts used throughout this work. The study of the
Rademacher complexity of sequential patterns is presented in Section 3.3: in
Section 3.3.1 we present an efficient strategy to compute an upper bound to
the Rademacher complexity of sequential patterns; in Section 3.3.2 we present
a strategy to approximate the Rademacher complexity of sequential patterns.
Next, in Section 3.4 we describe algorithms to find rigorous approximations
to the true frequent sequential patterns. Finally, in Section 3.5 we describe
our experimental evaluation to assess the performance of our algorithms to
approximate true frequent sequential patterns.

3.2 Preliminaries
We now provide the definitions and concepts used throughout this Chapter.
We start by defining the sequential patterns, and then we formally define the
problem which is the focus of this work: approximating sequential patterns
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that are frequently generated from the underlying generative process.
Let I = {i1, i2, . . . , ih} be a finite set of elements called items. I is also

called the ground set. An itemset P is a (non-empty) subset of I, that is,
P ✓ I. A sequential pattern p = hP1, P2, . . . , P`i is a finite ordered sequence

of itemsets, with Pi ✓ I, 1  i  `. A sequential pattern p is also called a
sequence. The length |p| of p is defined as the number of itemsets in p. The
item-length ||p|| of p is the sum of the sizes of the itemsets in p, that is,

||p|| =
|p|X

i=1

|Pi|, (3.1)

where |Pi| is the number of items in itemset Pi. A sequence a =
hA1, A2, . . . , Ami is a subsequence of another sequence b = hB1, B2, . . . , Bni,
denoted by a v b, if and only if there exist integers 1  i1 < i2 < . . . < im  n

such that A1 ✓ Bi1 , A2 ✓ Bi2 , . . . , Am ✓ Bim . If a is a subsequence of b,
then b is called a super-sequence of a, denoted by b w a.

Let U denote the set of all the sequences which can be built with itemsets
containing items from I. A dataset D is a finite bag of (sequential) trans-

actions where each transaction is a sequence from U. A sequence p belongs

to a transaction ⌧ 2 D if and only if p v ⌧ . For any sequence p, the sup-

port set TD(p) of p in D is the set of transactions in D to which p belongs:
TD(p) = {⌧ 2 D : p v ⌧}. The support SuppD(p) of p in D is the cardinality
of the set TD(p), that is the number of transactions in D to which p belongs:
SuppD(p) = |TD(p)|. Finally, the frequency fD(p) of p in D is the fraction of
transactions in D to which p belongs:

fD(p) =
SuppD(p)

|D| . (3.2)

A sequence p is closed w.r.t. D if for each of its super-sequences y A p we
have fD(y) < fD(p), or, equivalently, none of its super-sequence has support
equal to fD(p). We denote the set of all closed sequences in D with CS(D).

Example 1. Consider the following dataset D = {⌧1, ⌧2, ⌧3, ⌧4} as example:

⌧1 = h{6, 7}, {5}, {7}, {5}i
⌧2 = h{1}, {2}, {6, 7}, {5}i
⌧3 = h{1, 4}, {3}, {2}, {1, 2, 5, 6}i
⌧4 = h{1}, {2}, {6, 7}, {5}i
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The dataset above has 4 transactions. The first one, ⌧1 =
h{6, 7}, {5}, {7}, {5}i, it is a sequence of length |⌧1| = 4 and item-length

||⌧1|| = 5. The frequency fD(h{7}, {5}i) of h{7}, {5}i in D, is 3/4, since it is

contained in all transactions but ⌧3. Note that the sequence h{7}, {5}i occurs

three times as a subsequence of ⌧1, but ⌧1 contributes only once to the fre-

quency of h{7}, {5}i. The sequence h{7}, {6}, {5}i is not a subsequence of ⌧1

because the order of the itemsets in the two sequences is not the same. Note

that from the definitions above, an item can only occur once in an itemset,

but it can occur multiple times in different itemsets of the same sequence. Fi-

nally, the sequence h{6, 7}, {5}i, whose frequency is 3/4, is a closed sequence,

since its frequency is higher than the frequency of each of its super-sequences.

Given a minimum frequency threshold ✓ 2 (0, 1], we define the set
FSP (D, ✓) as the set of all the sequential patterns (and their frequencies)
whose frequency in D is at least ✓, that is

FSP (D, ✓) = {(p, fD(p)) : p 2 U, fD(p) � ✓}. (3.3)

In this work our aim is to use the transactional dataset D in order to
approximate the true frequent sequential patterns, i.e., the sequential pat-
terns that are frequently generated from the unknown distribution ⇡ that
generates sequential patterns. Thus, given a minimum frequency threshold
✓ 2 (0, 1], we are interested in finding a rigorous approximation to the set
TFSP (⇡, ✓) of true frequent sequential patterns, which is defined as follows:

TFSP (⇡, ✓) = {(p, t⇡(p)) : p 2 U, t⇡(p) � ✓}, (3.4)

where, recalling from Section 2.1.2, t⇡(p) is the true frequency of sequential
pattern p w.r.t. ⇡.

Now we provide two different definitions of approximation of TFSP (⇡, ✓).
The first definition provides an approximation that does not have false nega-
tives, i.e., that does not miss any true frequent sequential pattern, similarly
to Definition 3.

Definition 9. Given µ 2 (0, 1), a false negatives free (FNF) µ-approximation

E of TFSP (⇡, ✓) is defined as a set of pairs (p, fp):

E = {(p, fp) : p 2 U, fp 2 [0, 1]} (3.5)

that has the following properties:
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• E contains a pair (p, fp) for every (p, t⇡(p)) 2 TFSP (⇡, ✓);

• E contains no pair (p, fp) such that t⇡(p) < ✓ � µ;

• for every (p, fp) 2 E, it holds |t⇡(p)� fp|  µ/2.

While the previous definition provides guarantees to avoid false negatives,
depending on the application instead one may want to avoid false positives,
i.e., sequential patterns that are erroneously reported as true frequent. The
following definition provides an approximation that does not contain false
positives.

Definition 10. Given µ 2 (0, 1), a false positives free (FPF) µ-

approximation G of TFSP (⇡, ✓) is defined as a set of pairs (p, fp):

G = {(p, fp) : p 2 U, fp 2 [0, 1]} (3.6)

that has the following properties:

• G contains no pair (p, fp) such that t⇡(p) < ✓;

• G contains all the pairs (p, fp) such that t⇡(p) � ✓ + µ;

• for every (p, fp) 2 G, it holds |t⇡(p)� fp|  µ/2.

In the next section we present the Rademacher complexity of sequential
patterns, which is a crucial tool to find an upper bound to the maximum
deviation supp2U |t⇡(p)� fD(p)|, and then to find rigorous approximations of
TFSP (⇡, ✓) accordingly with Definition 9 and Definition 10.

3.3 Rademacher Complexity of Sequential Pat-
terns

In this section we introduce the Rademacher complexity of sequential pat-
terns. We propose a method for finding an efficiently computable upper
bound to the empirical Rademacher complexity RD of sequential patterns
(similar to what has been done in [Riondato and Upfal, 2015] for itemsets)
and a method for approximating it. In the true frequent pattern mining
scenario, these results will be useful to define a quantity which is an upper
bound to the maximum deviation supp2U |t⇡(p)�fD(p)| with high probability.
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The introduction of the Rademacher complexity of sequential patterns
requires the definition of a set of real-valued functions. We define, for each
pattern p 2 U, the indicator function �p : U! {0, 1} as:

�p(t) =

(
1 if p v t

0 otherwise
, (3.7)

where t is a transaction. Given a transaction t of a dataset D with n transac-
tions, �p(t) is 1 if p appears in t, otherwise it is 0. We define the set of real-
valued functions as the family of these indicator functions. The frequency of
p in D can be defined using the indicator function �p: fD(p) =

P
t2D �p(t)/n.

The (empirical) Rademacher complexity RD on a given dataset D is defined
as:

RD = E�

"
sup
p2U

1

n

nX

i=1

�i�p(ti)

#
, (3.8)

where the expectation is taken w.r.t. the Rademacher r.v. �i, that is, con-
ditionally on the dataset D. The connection between the Rademacher com-
plexity of sequential patterns and the maximum deviation is given by the
following theorem, which derives from standard results in statistical learning
theory (Thm. 3.2 in [Boucheron et al., 2005]).
Theorem 2. With probability at least 1� �:

sup
p2U

|t⇡(p)� fD(p)|  2RD +

s
2 ln (2/�)

|D| =
µR

2
. (3.9)

The naïve computation of the exact value of RD is expensive since it re-
quires to mine all patterns from D and to generate all possible 2n combination
values of the Rademacher variables for the computation of the expectation.
In the next sections we present an efficiently computable upper bound on
the Rademacher complexity of sequential patterns and a simple method that
approximates it, which are useful to find, respectively, an upper bound and
an approximation to µR/2.

3.3.1 An Efficiently Computable Upper Bound to the

Rademacher Complexity of Sequential Patterns

For any pattern p 2 U, let us define the following |D|-dimensional vector

vD(p) = (�p(t1), . . . ,�p(t|D|)) (3.10)
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and let VD = {vD(p), p 2 U}, where t1, t2, . . . , t|D| are the |D| transactions of
D. Note that all the infinite sequences of the universe U which do not appear
in D are associated with the vector (0, . . . , 0) of |D| zeros. This implies the
finiteness of the size of VD: |VD| < 1. In addition, defining |U(D)| as the
number of sequential patterns that appear in D, we have that potentially
|VD| ⌧ |U(D)|, since there may be two or more patterns associated with
the same vector vD 2 VD (i.e., these patterns appear exactly in the same
transactions).

The following two theorems derive from known results of statistical learn-
ing theory (Thm. 3.3 of [Boucheron et al., 2005]). Both theorems have been
used for mining frequent itemsets [Riondato and Upfal, 2015], and can be
applied for sequential pattern mining.

Theorem 3. (Massart’s Lemma)

RD  max
p2U

||vD(p)||
p
2 ln |VD|
|D| (3.11)

where || · || indicates the Euclidean norm.

The following theorem is a stronger version of the previous one.

Theorem 4. Let w : R+ ! R+
be the function

w(s) =
1

s
ln
X

v2VD

exp

✓
s
2||v||2

2|D|2

◆
, (3.12)

then

RD  min
s2R+

w(s). (3.13)

The upper bound on RD of Theorem 4 is not directly applicable to se-
quential pattern mining since it requires to mine every pattern that appear
in D in order to determine the entire set VD. However, the set VD is related
to the set of closed sequential patterns on D. The following two results give
us an upper bound to the size of VD which depends on the number of closed
sequential patterns of D.

Lemma 1. Consider a subset W of the dataset D, W ✓ D. Let CSW (D) be

the set of closed sequential patterns in D whose support set in D is W , that

is, CSW (D) = {p 2 CS(D) : TD(p) = W}, with C = |CSW (D)|. Then the

number C of closed sequential patterns in D with W as support set satisfies:

0  C  |CS(D)|.
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Proof. The proof is organized in such a way: first, we show that the basic
cases C = 0 and C = 1 hold, second, we prove the cases for 2  C  |CS(D)|.

Let us consider the case where W is a particular subset of D for which
no sequence has W as support set in D. Thus, CSW (D) is an empty set and
C = 0. The case C = 1 is trivial, since it could happen that only one closed
sequential pattern has W as support set in D.

Now, before proving the cases for a generic value of C in [2, . . . , |CS(D)|],
we start by considering the case C = 2. Let p1,p2 be two sequences with W

as support set. Assume that each super-sequence of p1 but not of p2 has
support lower than the support of p1, and each super-sequence of p2 but
not of p1 has support lower than the support of p2. Now, let us focus on
super-sequences of both p1 and p2. Let ⌧ 2 W be a transaction of W . We
define y⌧ = ⌧p1,p2 as the subsequence of ⌧ restricted to only the sequences
p1 and p2, preserving the relative order of their itemsets. For instance, let
p1 = hA,Bi, p2 = hC,Di and ⌧ = hA,C, F,D,Bi, where A,B,C,D, F are
itemsets: thus, y⌧ = hA,C,D,Bi. Now, if the support set of y⌧ in W does
not coincide with W , that is, TW (y⌧ ) ⇢ W , then for each transaction ⌧ 2 W

we have |TW (y⌧ )| < |TW (p1)| = |TW (p2)| = |W |. Note that this could happen
because the set of itemsets of p1 and p2 may not appear in the same order in
all transactions. Hence each super-sequence of both p1 and p2 has support
lower than the support of p1 (that is equal to the support of p2). Thus, each
super-sequence of pi has a lower support compared to the support of pi, for
i = 1, 2. This implies that p1 and p2 are closed sequences in D and since
their support set is W , they belong to CSW (D). Thus, the case C = 2 could
happen.

Now we generalize this concept for a generic number C of closed sequential
patterns, where 2  C  |CS(D)|. Let H = {p1, p2, . . . , pC} be a set of
C sequential patterns with W as support set. Assume that each super-
sequence of pi but not of pk has support lower than the support of pi, for
each i, k 2 [1, . . . , C] with k 6= i. Let Hp be the power set of H without the
empty set and the sets made of only one sequence, that is, Hp = P(H) \
{{;}, {p1}, {p2}, . . . , {pC}}. So, in Hp there are every possible subset of H
of size greater than one. For a transaction ⌧ 2 W and hp 2 Hp, we define
y⌧ (hp) = ⌧hp as the subsequence of ⌧ restricted to hp, that is, to only the
sequences p 2 hp, preserving the relative order of their itemsets. If 8hp 2 Hp

there exits a transaction ⌧ 2 W such that the support set of y⌧ (hp) in W does
not coincide with W , that is, TW (y⌧ (hp)) ⇢ W , then for each transaction
⌧ 2 W we have |TW (y⌧ (hp))| < |TW (p1)| = · · · = |TW (pC)| = |W |. Hence

26



3.3. RADEMACHER COMPLEXITY OF SEQUENTIAL PATTERNS

each super-sequence made of only sequences of hp has support lower than the
support of pi, for i = 1, . . . , C. Thus, each super-sequence of pi has a lower
support compared to the support of pi, for i = 1, . . . , C. This implies that
all sequences of H are closed sequence in D and since their support set is W ,
they belong to CSW (D).

Now we present an example where C = 2.

Example 2. A simple example where C = 2 is depicted in Figure 3.1. Note

first of all that each super-sequence of x1 but not of x2 has support lower than

the support of x1, and each super-sequence of x2 but not of x1 has support

lower than the support of x2. Let y⌧ = ⌧x1,x2 be the subsequence of transaction

⌧ restricted to only the sequences x1 and x2, preserving the relative order of

their itemsets. Then y⌧1 = y⌧3 6= y⌧2 which implies |TW (y⌧1)|, |TW (y⌧2)|, and

|TW (y⌧3)| be lower than |TW (x1)| = |TW (x2)| = |W |. Therefore each super-

sequence of both x1 and x2 has support lower than the support of x1 (i.e.

equal to the one of x2). Thus, x1 and x2 are closed sequences in D with the

same support set W .

Figure 3.1: Graphical representation of the case CSW (D) = 2. Sequences x1

and x2 are closed sequences in D with the same support set W .

Note that Lemma 1 represents a sequential patterns version of Lemma
3 of [Riondato and Upfal, 2015] for itemsets, where the upper bound to the
number of closed itemsets in D with W as support set is one (this holds
by the nature of the itemsets where the notion of “ordering” is not defined).
Lemma 1 is crucial for proving the following lemma which provides a bound
on the size of the set VD of binary vectors.
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Lemma 2. VD = {vD(p) : p 2 CS(D)}[{(0, . . . , 0)} and |VD|  |CS(D)|+
1, that is, each vector of VD different from (0, . . . , 0) is associated with at

least one closed sequential pattern in D.

Proof. Let VD = V D [ {(0, . . . , 0)}, where V D = {v 2 VD : v 6= (0, . . . , 0)}.
Let p 2 U be a sequence of non-empty support set in D, that is, vD(p) 6=
(0, . . . , 0). There are two possibilities: p is or is not a closed sequence in
D. If p is not a closed sequence, then there exists a closed super-sequence
y A p with support equal to the support of p, so with vD(p) = vD(y). Thus,
vD(p) is associated with at least one closed sequence. Combining this with
the fact that each vector v 2 V D is associated with at least one sequence
p 2 U and Lemma 1, then each vector of VD different from (0, . . . , 0) is
associated with at least one closed sequential pattern of D. To conclude
our proof is sufficient to show that there are no closed sequences associated
with the vector (0, . . . , 0). Let SP1 = {p 2 U : vD(p) = (0, . . . , 0)}.
Note that |SP1| = 1. For each p 2 SP1, there always exists a super-
sequence y A p such that fD(p) = fD(y) = 0. This implies that each
sequence of SP1 is not closed. Thus, V D = {vD(p) : p 2 CS(D)} and
|VD| = |V D|+ 1  |CS(D)|+ 1.

Combining a partitioning of CS(D) with the previous lemma we can
define a function w̃, an upper bound to the function w of Theorem 4, which
is efficient to compute with a single scan of D. Let I be the set of items that
appear in the dataset D and <o be its increasing ordering by their support in
D (ties broken arbitrarily). Given an item a, let TD(h{a}i) be its support set
on D. Let <a denote the increasing ordering of the transactions TD(h{a}i)
by the number of items contained that come after a w.r.t. the ordering <o

(ties broken arbitrarily). Let CS(D) = C1 [ C2+, where C1 = {p 2 CS(D) :
||p|| = 1} and C2+ = {p 2 CS(D) : ||p|| � 2}. Let us focus on partitioning
C2+. Let p 2 C2+ and let a be the item in p which comes before any other
item in p w.r.t. the order <o. Let ⌧ be the transaction containing p which
comes before any other transaction containing p w.r.t. the order <a. We
assign p to the set Ca,⌧ . Remember that an item can appear multiple times
in a sequence. Given a transaction ⌧ 2 TD(h{a}i), ba,⌧ is the number of items
in ⌧ (counted with their multiplicity) equal to a or that come after a in <o.
Let za,⌧ be the multiplicity of a in ⌧ . For each b, z � 1, z  b, let 'a,b,z be the
number of transactions in TD(h{a}i) that contain exactly b items (counted
with their multiplicity) equal to a or located after a in the ordering <o, with
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exactly z repetitions of a. Let �a = max{b : 'a,b,z > 0}. The following
lemma gives us an upper bound to the size of Ca,⌧ .

Lemma 3. We have

|Ca,⌧ |  2ba,⌧�za,⌧ (2za,⌧ � 1). (3.14)

Proof. Ca,⌧ represents a subset of the set � of all those subsequences of ⌧
that are made of only items equal to a or that come after a in <o, with item-
length at least two and with at least one occurrence of a. Let us focus on
finding an upper bound to |�|. In order to build such a generic subsequence
of ⌧ , it is sufficient to select i occurrences of a among the za,⌧ available,
with 1  i  za,⌧ , and choose j items among the remaining ba,⌧ � za,⌧ items
different from a. Note that if i = 1, then j must be greater than 0. Thus,
using the fact that the sum of

�
n
k

�
for k = 0, . . . , n is equal to 2n, we have

|�| 
✓
za,⌧

1

◆ ba,⌧�za,⌧X

j=1

✓
ba,⌧ � za,⌧

j

◆
+

za,⌧X

i=2

"✓
za,⌧

i

◆ ba,⌧�za,⌧X

j=0

✓
ba,⌧ � za,⌧

j

◆#


 2ba,⌧�za,⌧

za,⌧X

i=1

✓
za,⌧

i

◆
= 2ba,⌧�za,⌧ (2za,⌧ � 1), (3.15)

where the first inequality holds because some sequences of � are counted
more times. Since |Ca,⌧ |  |�|, the thesis holds.

Combining the following partitioning of CS(D) as

CS(D) = C1 [ C2+ = C1 [

0

@
[

a2I

[

⌧2TD(h{a}i)

Ca,⌧

1

A (3.16)

with the previous lemma, we obtain

|CS(D)|  |I|+
X

a2I

X

⌧2TD(h{a}i)

2ba,⌧�za,⌧ (2za,⌧ � 1). (3.17)

Now we are ready to define the function w̃, which can be used to obtain
an efficiently computable upper bound to RD. The following lemma repre-
sents the analogous of Lemma 5 of [Riondato and Upfal, 2015], adjusted for
sequential patterns. Let ⌘ be the average item-length of the transactions of
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D, that is, ⌘ =
P

t2D ||t||/n. Let ⌘̂ be the maximum item-length of the trans-
actions of D, that is, ⌘̂ = maxt2D ||t||. Let ⌘ be an item-length threshold,
with ⌘ < ⌘  ⌘̂. Let D(⌘) be the bag of transactions of D with item-length
greater than ⌘. Let VD(⌘) be the set of the 2|D(⌘)|�1 binary vectors associated
with all possible non-empty sub-bags of D(⌘).

Lemma 4. Given an item a in I, we define the following quantity:

q(a, ⌘) = 1 +
�aX

b=1

bX

z=1

'a,b,zX

j=1

 
(b  ⌘)2b�z(2z � 1) + (b > ⌘)

⌘�1X

i=1

✓
b� 1

i

◆!
.

(3.18)
Let w̃ : R+ ! R+

be the function

w̃(s, ⌘) =
1

s
ln
X

a2I

0

B@q(a, ⌘)e

s
2
fD(h{a}i)
2|D| + |VD(⌘)|e

s
2|D(⌘)|
2|D|2 + 1

1

CA. (3.19)

Then,

RD  min
s2R+,⌘<⌘⌘̂

w̃(s, ⌘). (3.20)

Proof. Let us consider the function w from Theorem 4. For a given value of
⌘, we have that VD ✓ (VD \ VD(⌘)) [ VD(⌘), since not all the binary vectors of
VD(⌘) necessarily belong to VD. Thus:

w(s) =
1

s
ln
X

v2VD

exp

✓
s
2||v||2

2n2

◆


 1

s
ln

0

@
X

v2VD\VD(⌘)

exp

✓
s
2||v||2

2n2

◆
+
X

v2VD(⌘)

exp

✓
s
2||v||2

2n2

◆1

A, (3.21)

where n = |D|. For each binary vector v 2 VD(⌘) the maximum number of
1’s is |D(⌘)|. Thus,

X

v2VD(⌘)

exp

✓
s
2||v||2

2n2

◆
 |VD(⌘)| exp

✓
s
2|D(⌘)|
2n2

◆
. (3.22)
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By using the definition of Euclidean norm, we have that, for any sequence
p 2 U,

||vD(p)|| =

vuut
nX

i=1

�p(ti)2 =
p

nfD(p). (3.23)

Note that each closed sequential pattern p with ||p|| > ⌘ can only appear in
transactions of D(⌘) and, consequently, it is associated with a binary vector
of VD(⌘) and not of VD \ VD(⌘). Thus, defining CS(D, ⌘) as the set of closed
sequential patterns of D with item-length lower or equal to ⌘ and using
Lemma 2 we can use the sum over CS(D, ⌘) as an upper bound on the sum
over VD \ VD(⌘):

X

v2VD\VD(⌘)

exp

✓
s
2||v||2

2n2

◆


X

p2CS(D,⌘)

exp

✓
s
2
fD(p)

2n

◆
+ 1. (3.24)

Note that the vector (0, . . . , 0) of VD \ VD(⌘) provides a +1.
Now let us focus on the first term of the sum. The set CS(D, ⌘) can be

broken using the Equation 3.16 in the sum over C1

X

p2C1

exp

✓
s
2
fD(p)

2n

◆
(3.25)

plus the sum over C2+(⌘) (i.e., the set of closed sequential patterns with
item-length in [2, ⌘])

X

a2I

X

⌧2TD(h{a}i)

X

p2Ca,⌧ (⌘)

exp

✓
s
2
fD(p)

2n

◆
, (3.26)

where Ca,⌧ (⌘) is the set of closed sequential patterns of Ca,⌧ with item-length
in [2, ⌘]. Since the set of items of the sequences in C1 is a subset of I, we
have X

p2C1

exp

✓
s
2
fD(p)

2n

◆

X

a2I

exp

✓
s
2
fD(h{a}i)

2n

◆
. (3.27)

For any p 2 Ca,⌧ (⌘), fD(p)  fD(h{a}i) by the anti-monotonicity support
property for sequential patterns. An upper bound to the size of Ca,⌧ (⌘) can
be computed in two ways, depending on the value of ba,⌧ . If ba,⌧  ⌘, we can
use Lemma 3: X

⌧2TD(h{a}i)

X

p2Ca,⌧ (⌘)

exp

✓
s
2
fD(p)

2n

◆
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X

⌧2TD(h{a}i)

2ba,⌧�za,⌧ (2za,⌧ � 1) exp

✓
s
2
fD(h{a}i)

2n

◆
. (3.28)

If ba,⌧ > ⌘ we have to count the number of possible closed sequential patterns
with at least one item equal to a and with item-length in [2, ⌘] that we can
build from ba,⌧ items of ⌧ :

X

⌧2TD(h{a}i)

X

p2Ca,⌧ (⌘)

exp

✓
s
2
fD(p)

2n

◆



X

⌧2TD(h{a}i)

⌘�1X

i=1

✓
ba,⌧ � 1

i

◆
exp

✓
s
2
fD(h{a}i)

2n

◆
. (3.29)

Finally, using the quantities �,b,z and ' previously defined and indicator
functions we can merge the right-hand sides of the last two inequalities

�aX

b=1

bX

z=1

'a,b,zX

j=1

( (b  ⌘)2b�z(2z�1)+ (b > ⌘)
⌘�1X

i=1

✓
b� 1

i

◆
) exp

✓
s
2
fD(h{a}i)

2n

◆
.

(3.30)
Thus, rearranging all the terms we reach the definition of w̃. Using the above
arguments and the best value of ⌘ which minimizes the function we have that
w(s)  w̃(s, ⌘) for any s 2 R+, ⌘ < ⌘  ⌘̂. Since RD  mins2R+ w(s) (by
Theorem 4), we conclude that RD  mins2R+,⌘<⌘⌘̂ w̃(s, ⌘).

For a given value of ⌘, the function w̃ can be compute with a single scan
of the dataset, since it requires to know 'a,b,z for each a 2 I and for each
b, z, 1  b  �a, 1  z  b. The values ⌘, ⌘̂, and the support of each item
and consequently the ordering <o are obtained during the dataset creation.
Thus, it is sufficient to look at each transaction ⌧ , sorting the items I⌧ that
appear in ⌧ according to <o, and, for each item of I⌧ , keep track of its
multiplicity za,⌧ , compute ba,⌧ and increase by one ga,ba,⌧ ,za,⌧ . Finally, since
w̃ is convex and has first and second derivatives w.r.t. s everywhere in R+,
its global minimum can be computed using a non-linear optimization solver.
This procedure has to be repeated for each possible value of ⌘ in (⌘, ⌘̂].

However, one could choose a particular schedule of values of ⌘ to be tested,
instead of taking into account each possible value, achieving a value of the
function w̃ near to its minimum. A possible choice is to look at the restricted
interval [⌘ + �1,min(�2, ⌘̂)], given two positive values for �1 and �2, instead
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of investigating the whole interval (⌘, ⌘̂]. This choice is motivated by the
fact that in Lemma 4 the value of ⌘ gives us an idea of which term of the
summation is dominant (the one based on closed sequential patterns or the
one based on binary vectors). If ⌘ is close to ⌘ then the number of binary
vectors we count could be high, the dominant term is the one based on the
set of binary vectors, and we expect the upper bound to be high. Instead,
if ⌘ is close to ⌘̂ then the upper bound to the number of closed sequential
patterns we count could be high, and the set of binary vectors we take into
account is small. In this case, the dominant term is the one based on the
closed sequential patterns, and the value of the upper bound could be high
(since we count many sequential patterns with item-length greater than ⌘

that instead would be associated with a small number of binary vectors).
Thus, the best value of ⌘ will be the one that is larger than ⌘ and smaller
than ⌘̂, enough to count not too many closed sequential patterns and binary
vectors.

The pseudo-code of the algorithm for computing the upper bound to RD
follows.
Algorithm 1: RadeBound(D): algorithm for bounding the empiri-
cal Rademacher complexity of sequential patterns
Data: : a sequential dataset D built on alphabet I
Result: upper bound R

ub
D to RD

1 'a,b,z  0, 8a 2 I, b, z 2 N, z  b;
2 �a  0, 8a 2 I;
/* ⌘, ⌘̂, and the support of the items are computed during

the scan of D */
3 for ⌧ 2 D do
4 for a 2 ⌧ do
5 ba,⌧  number of items in ⌧ (counted with their multiplicity)

equal to a or that come after a in <o;
6 za,⌧  number of repetitions of a in ⌧ ;
7 ga,ba,⌧ ,za,⌧+ = 1;
8 �a  max(�a, ba,⌧ );
9 return R

ub
D = mins2R+,⌘<⌘⌘̂ w̃(s, ⌘);

Finally, we define ComputeMaxDevRadeBound as the procedure for com-
puting an upper bound µ

ub
R /2 to µR/2 where, once the upper bound R

ub
D to

the Rademacher complexity RD is computed using Algorithm 1, the upper
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bound µ
ub
R /2 to µR/2 is obtained by

µ
ub
R

2
= 2Rub

D +

s
2 ln (2/�)

|D| . (3.31)

3.3.2 Approximating the Rademacher Complexity of

Sequential Patterns

The previous section presents an efficiently computable upper bound to the
Rademacher of sequential patterns, which does not require any extraction of
frequent sequences from a given dataset. Here we present a simple method
to approximate the Rademacher complexity of sequential patterns, which
provides a tighter bound to the maximum deviation compared to µ

ub
R /2 of

Equation 3.31
In the definition of the Rademacher complexity, a given combination �

of the Rademacher r.v. � splits the dataset D of n transactions in two sub-
samples D1(�) and D�1(�): each transaction associated with 1 and �1 goes
respectively into D1(�) and D�1(�). For a given sequential pattern p 2 U, let
SuppD1(�)(p) and SuppD�1(�)(p) be respectively the number of transactions
of D1(�) and D�1(�) in which p appears. Thus, the Rademacher complexity
can be rewritten as follows:

RD = E�

"
sup
p2U

1

n

nX

i=1

�i�p(ti)

#
= E�


sup
p2U

SuppD1(�)(p)� SuppD�1(�)(p)

n

�
.

(3.32)
In our approximation method we generate a single combination � of the
Rademacher r.v. �, instead of generating every possible combination and
then taking the expectation. Given �, the approximation R̃D(�) of RD is

R̃D(�) = sup
p2U

SuppD1(�)(p)� SuppD�1(�)(p)

n
. (3.33)

The first step of the procedure is to mine frequent sequential patterns
from D1(�) and D�1(�), given a frequency threshold . Let FSP (D1(�),)
and FSP (D�1(�),) be the sets of sequential patterns with support greater
or equal than  in D1(�) and D�1(�), respectively. Let us define the following
quantities:

�(p) = SuppD1(�)(p)� SuppD�1(�)(p), (3.34)
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�1 = sup{�(p) : p 2 FSP (D1(�),) \ FSP (D�1(�),)}, (3.35)

and

�2 = sup{�(p) : p 2 FSP (D1(�),) \ FSP (D�1(�),)}. (3.36)

If max(�1, �2)/n �  then R̃D(�) = max(�1, �2)/n, since each pattern p that
is not frequent in both sub-samples has �(p)/n lower than . Instead, if
max(�1, �2)/n <  the entire procedure is repeated with  = max(�1, �2)/n.
Note that, since the Rademacher complexity is a non-negative quantity, it is
not necessary to look at patterns in FSP (D�1(�),) \ FSP (D1(�),) since
their �(p)’s values are negative. The pseudo-code of the method for finding
an approximation of RD is presented in Algorithm 2. The extraction of
frequent sequences from the two sub-samples can be done using one of the
many algorithms for mining frequent sequential patterns.
Algorithm 2: RadeApprox(D,): algorithm for approximating the
Rademacher complexity of sequential patterns.
Data: : dataset D;  2 (0, 1]
Result: approximation R

ap
D to RD

1 �  combination of �;
2 split D into D1(�) and D�1(�);
3 found false;
4 �  0;
5 while !found do
6 compute FSP (D1(�),);
7 compute FSP (D�1(�),);
8 if |FSP (D1(�),)|+ |FSP (D�1(�),)| = 0 then
9  /2;

10 continue;
11 compute �1 and �2;
12 �  max(�1, �2)/|D|;
13 if � �  then found true;
14 else  �;
15 return R

ap
D = �;

Finally, we define ComputeMaxDevRadeApprox as the procedure for com-
puting an approximation µ

ap
R /2 of µR/2 where, once the approximation R

ap
D

of the Rademacher complexity RD is computed using Algorithm 2, the ap-
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proximation µ
ap
R /2 of µR/2 is obtained by:

µ
ap
R

2
= 2Rap

D +

s
2 ln (2/�)

|D| . (3.37)

3.4 Algorithms for True Frequent Sequential
Pattern Mining

In this section, we describe our approach to find rigorous approximations to
the true frequent sequential patterns. In particular, given a dataset D, that is
a finite bag of n i.i.d. samples from an unknown probability distribution ⇡ on
U, a minimum frequency threshold ✓ 2 (0, 1] and a confidence parameter � 2
(0, 1), we aim to find rigorous approximations of the true frequent sequential
patterns w.r.t. ✓, defined in Definition 9 and Definition 10, with probability
at least 1� �.

The intuition behind our approach is the following. If we know an upper
bound µ/2 on the maximum deviation, that is supp2U |t⇡(p)� fD(p)|  µ/2,
we can identify a frequency threshold ✓̂ (resp. ✓̃) such that the set FSP (D, ✓̂)
is a FPF µ-approximation (resp. FSP (D, ✓̃) is a FNF µ-approximation) of
TFSP (⇡, ✓). The upper bound on the maximum deviation can be computed,
as illustrated in the previous sections, with the Rademacher complexity.

We now describe how to identify the threshold ✓̂ that allows to obtain
a FPF µ-approximation. Suppose that supp2U |t⇡(p) � fD(p)|  µ/2. In
such a scenario, we have that every sequential pattern p

⇤
/2 TFSP (⇡, ✓),

and so that has t⇡(p⇤) < ✓, has a frequency fD(p⇤) < ✓ + µ/2 = ✓̂. Hence,
the only sequential patterns that can have frequency in D greater or equal
to ✓̂ = ✓ + µ/2, are those with true frequency at least ✓. The intuition is
that if we find a µ such that supp2U |t⇡(p) � fD(p)|  µ/2, we know that
all the sequences p 2 U that are not true frequent w.r.t ✓, cannot be in
FSP (D, ✓̂). The following theorem formalizes the strategy to obtain a FPF
µ-approximation.

Theorem 5. Given � 2 (0, 1), such that supp2U |t⇡(p) � fD(p)|  µ/2 with

probability at least 1 � �, and given ✓ 2 (0, 1], the set FSP (D, ✓̂), with ✓̂ =
✓+µ/2, is a FPF µ-approximation of the set TFSP (⇡, ✓) with probability at

least 1� �.
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Proof. Suppose that supp2U |t⇡(p)� fD(p)|  µ/2. Thus, we have that for all
the sequential patterns p 2 U, it results fD(p) 2 [t⇡(p) � µ/2, t⇡(p) + µ/2].
This also holds for the sequential patterns in G = FSP (D, ✓̂). Therefore, the
set G satisfies Property 3 of Definition 10. Let p⇤ be a sequential pattern such
that t⇡(p⇤) < ✓, that is, it is not a true frequent sequential pattern w.r.t. ✓.
Then, fD(p⇤) < ✓+µ/2 = ✓̂, that is, p⇤ /2 G, which allows us to conclude that
G also has Property 1 from Definition 10. Now, let p0 be a sequential pattern
such that t⇡(p0) � ✓+µ. Then, fD(p0) � ✓+µ/2, that is p0 2 G, which allows
us to conclude that G also has Property 2 from Definition 10. Since we know
that supp2U |t⇡(p)�fD(p)|  µ/2 with probability at least 1� �, then the set
G is a FPF µ-approximation of TFSP (⇡, ✓) with probability at least 1 � �,
which concludes the proof.

Theorem 5 shows how to compute a corrected threshold ✓̂ such that the
set FSP (D, ✓̂) is a FPF µ-approximation of TFSP (⇡, ✓), that is, FSP (D, ✓̂)
only contains sequential patterns that are in TFSP (⇡, ✓). It guarantees that
with high probability the set FSP (D, ✓̂) does not contain false positives but
it has not guarantees on the number of false negatives, that is, sequential
patterns that are in TFSP (⇡, ✓) but not in FSP (D, ✓̂). On the other hand,
we might be interested in finding all the true frequent sequential patterns
in TFSP (⇡, ✓). The following result shows how to identify a threshold ✓̃

such that the set FSP (D, ✓̃) contains all the true frequent sequential pat-
terns in TFSP (⇡, ✓) with high probability, that is, FSP (D, ✓̃) is a FNF
µ-approximation of TFSP (⇡, ✓).

Theorem 6. Given � 2 (0, 1), such that supp2U |t⇡(p) � fD(p)|  µ/2 with

probability at least 1 � �, and given ✓ 2 (0, 1], the set FSP (D, ✓̃), with ✓̃ =
✓�µ/2, is a FNF µ-approximation of the set TFSP (⇡, ✓) with probability at

least 1� �.

Proof. Suppose that supp2U |t⇡(p)� fD(p)|  µ/2. Thus, we have that for all
the sequential patterns p 2 U, it results fD(p) 2 [t⇡(p) � µ/2, t⇡(p) + µ/2].
This also holds for the sequential patterns in E = FSP (D, ✓̃). Therefore,
the set E satisfies Property 3 of Definition 9. It also means that for all p 2
TFSP (⇡, ✓), fD(p) � ✓�µ/2 = ✓̃, that is, p 2 E , which allows us to conclude
that E also has Property 1 from Definition 9. Now, let p

⇤ be a sequential
pattern such that t⇡(p⇤) < ✓ � µ. Then, fD(p⇤) < ✓ � µ/2, that is p

⇤
/2 E ,

which allows us to conclude that E also has Property 2 from Definition 9.
Since we know that supp2U |t⇡(p)�fD(p)|  µ/2 with probability at least 1��,
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then the set E is a FNF µ-approximation of TFSP (⇡, ✓) with probability at
least 1� �, which concludes the proof.

Note that while Theorem 6 provides guarantees on false negatives, it does
not provide guarantees on the number of false positives in FSP (D, ✓̃).

Algorithm 3 shows the pseudo-code of the two strategies to mine the true
frequent sequential patterns. To compute an upper bound on the maximum
deviation, it is possible to use the two procedures ComputeMaxDevRade-

Bound (Equation 3.31) and ComputeMaxDevRadeApprox (Equation 3.37)
based on the Rademacher complexity. However, the same strategy applies
when the upper bound on the maximum deviation is computed with other
techniques, e.g., the VC-dimension [Vapnik and Chervonenkis, 1971]. The
mining of D can be performed with any efficient algorithm for the exact
mining of frequent sequential patterns.
Algorithm 3: Mining the True Frequent Sequential Patterns.
Data: Dataset D; � 2 (0, 1); ✓ 2 (0, 1]
Result: Set G (resp. E) that is a FPF µ-approximation (resp. FNF

µ-approximation) to TFSP (⇡, ✓) with probability � 1� �.
1 µ/2 ComputeMaxDeviationBound(D, �);
2 G  FSP (D, ✓ + µ/2); /* resp. E  FSP (D, ✓ � µ/2) to obtain

a FNF µ-approximation */
3 return G; /* resp. E */

3.5 Experimental Evaluation
In this section, we report the results of our experimental evaluation on multi-
ple datasets to assess the performance of the algorithms we proposed in this
work. The goals of the evaluation are the following:

• Assess whether a classical algorithm for mining frequent sequential pat-
terns from the datasets provides false positives or false negatives w.r.t.
the set of true frequent sequential patterns;

• Assess the performance of our algorithms for mining the true frequent
sequential patterns. In particular, to assess whether with probability
1� � the set of frequent sequential patterns extracted from the dataset
with the corrected threshold does not contain false positives, that is,
it is a FPF µ-approximation of TSFP (⇡, ✓), for the first method,

38



3.5. EXPERIMENTAL EVALUATION

and contains all the TFSPs, that is, it is a FNF µ-approximation of
TSFP (⇡, ✓), for the second method. We show the results obtained us-
ing the upper bound and the approximation of the Rademacher com-
plexity, which are both used to compute an upper bound to the maxi-
mum deviation.

Since no algorithm to mine true frequent sequential patterns have been
previously proposed, we do not consider other methods in our experimental
evaluation.

3.5.1 Implementation, Datasets, Parameters, and Envi-

ronment

The code to compute the bound and the approximation to the Rademacher
Complexity (resp. Algorithm 1 and Algorithm 2) has been developed in
C++. We have performed all our experiments on the same machine with
512 GB of RAM and 2 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.3GHz. To
mine sequential patterns, we used the PrefixSpan [Pei et al., 2004] implemen-
tation provided by the SPMF library [Fournier-Viger et al., 2016]. We used
NLopt [Johnson, 2014] as non-linear optimization solver. Our open-source
implementation and the code developed for the tests, including scripts to
reproduce all results, are available online 1.

Now, we describe the datasets we used in our evaluation. All datasets are
obtained starting from the following real datasets:

• BIBLE: a conversion of the Bible into sequence where each word is an
item;

• BMS1: contains sequences of click-stream data from the e-commerce
website Gazelle;

• BMS2: contains sequences of click-stream data from the e-commerce
website Gazelle;

• KOSARAK: contains sequences of click-stream data from an Hungarian
news portal;

1Available at https://github.com/VandinLab/VCRadSPM
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Table 3.1: Datasets characteristics. For each dataset D, we report the num-
ber |D| of transactions, the total number |I| of items, the average transaction
item-length ||⌧ || and the maximum transaction item-length ||⌧ ||

Dataset D Size |D| |I| Avg. ||⌧ || Max. ||⌧ ||
BIBLE 36369 13905 21.6 100
BMS1 59601 497 2.5 267
BMS2 77512 3340 4.6 161

KOSARAK 69999 14804 8.0 796
LEVIATHAN 5835 9025 33.8 100

MSNBC 989818 17 4.8 14795

• LEVIATHAN: is a conversion of the novel Leviathan by Thomas
Hobbes (1651) as a sequence dataset where each word is an item;

• MSNBC: contains sequences of click-stream data from MSNBC website
and each item represents the category of a web page;

All the datasets used are publicly available online [Fournier-Viger et al.,
2016]. The characteristics of such datasets are reported in Table 3.1.

To evaluate our algorithms to mine the true frequent sequential patterns,
we need to know which are the sequential patterns that are frequently gener-
ated from the unknown generative process ⇡. In particular, we need a ground

truth of the true frequencies of the sequential patterns. We generated pseudo-
artificial datasets by taking some of the datasets in Table 3.1 as ground truth
for the true frequencies t⇡ of the sequential patterns. For each ground truth,
we created four new datasets by sampling sequential transactions uniformly
at random from the original dataset. All the new datasets have the same
number of transactions of the respectively ground truth, that is, the respec-
tively original dataset. We used the original datasets as ground truth and
we executed our evaluation in the new (sampled) datasets. Therefore, the
true frequency of a sequential pattern is its frequency in the original dataset,
which is exactly the same that such pattern would have in an hypothetical
infinite number of transactions generated by the unknown generative process
⇡.

40



3.5. EXPERIMENTAL EVALUATION

3.5.2 True Frequent Sequential Patterns Mining Re-

sults

In this section, we describe the results of our algorithms for mining the true
frequent sequential patterns. In all these experiments, we fixed � = 0.1.

First of all, for each real dataset we generated 4 pseudo-artificial datasets
Di, i 2 [1, 4] from the same ground truth. We mined the set FSP (Di, ✓),
and we compared it with the true frequent sequential patterns, that is, the
set FSP (D, ✓), where D is the ground truth. Such experiments aim to
verify whether the sets of the frequent sequential patterns extracted from
the pseudo-artificial datasets contain false positives and miss some true fre-
quent sequential patterns. Table 3.2 shows the fractions of times that the set
FSP (Di, ✓) contains false positives and misses true frequent sequential pat-
terns from the ground truth. We ran this evaluation over the four datasets
Di, i 2 [1, 4], of the same size from the same ground truth and we reported
the average. For each dataset, we report the results with two frequency
thresholds ✓. In almost all the cases, the frequent sequential patterns mined
from the pseudo-artificial datasets contain false positives and miss some true
frequent sequential patterns. In particular, with lower frequency thresholds
(and, therefore, a larger number of patterns), the fraction of times we find
false positives and false negatives usually increases. These results emphasize
that, in general, the mining of the frequent sequential patterns is not enough
to learn interesting features of the underlying generative process of the data,
and techniques like the ones introduced in this work are necessary.

Then, we compute the upper bounds to the maximum deviation intro-
duced in the previous sections, since our strategy to find an approximation to
the true frequent sequential patterns hinges on finding a tight upper bound
to the maximum deviation. For each pseudo-artificial dataset, we computed
the upper bound µ

ub
R /2 to the maximum deviation (ComputeMaxDevRade-

Bound, Equation 3.31) using the upper bound to Rademacher complexity
presented in Section 3.3.1, and the upper bound µ

ap
R /2 to the maximum devi-

ation (ComputeMaxDevRadeApprox, Equation 3.37) using the Rademacher
complexity approximation presented in Section 3.3.2. Table 3.3 shows the
values of the upper bound computed with both methods. The method based
on the approximation of the Rademacher complexity provides, as expected,
tighter upper bounds to the maximum deviation compared to the ones ob-
tained using the method based on the upper bound to the Rademacher com-
plexity. More precisely, for each datasets, the average values for the upper
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Table 3.2: The table shows the average fraction of times that FSP (Di, ✓)
contains false positives and false negatives. For each dataset D: ✓ is the min-
imum frequency threshold, |TFSP| is the number of true frequent sequential
patterns in the ground truth, Times FPs (%) is the percentage of runs con-
taining at least one false positive (FP), and Times FNs (%) is the percentage
of runs containing at least one false negative (FN).

Dataset D ✓ |TFSP| Times FPs (%) Times FNs (%)

BIBLE 0.1 174 50 100
0.05 774 100 100

BMS1 0.025 13 50 0
0.0225 17 0 25

BMS2 0.025 10 0 0
0.0225 11 0 0

KOSARAK 0.06 23 100 0
0.04 41 50 25

LEVIATHAN 0.15 225 75 100
0.1 651 100 100

MSNBC 0.02 97 75 25
0.015 143 100 50

bounds µ
ub
R /2 and µ

ap
R /2 are such that µ

ub
R /µ

ap
R 2 [1.8, 7.2].

In our implementation of Algorithm 1 to compute an upper bound to
the empirical Rademacher complexity of sequential patterns, we compute
several upper bounds associated with different integer values of ⌘ 2 [⌘ +
�1,min(�2, ⌘̂)] for fixed values of �1 and �2, taking the minimum bound
among those computed. In our experiments, we fixed �1 = 20 and �2 = 120.
In practice, by increasing the value of ⌘ we observe a decreasing trend of the
upper bound value until a minimum value is reached. Then, by increasing
again the value of ⌘ the value of the upper bound increases until it converges
to the one achieved with ⌘ = ⌘̂. In addition, for each pseudo-artificial dataset
the value of ⌘ associated with the minimum value of the upper bound to the
maximum deviation is always found in [⌘ + �1,min(�2, ⌘̂)], with �1 = 20,
�2 = 120.

Finally, we evaluated the performance of our two strategies to mine an
approximation of the true frequent sequential patterns, the first one with
guarantees on the false positives and the second one with guarantees on
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Table 3.3: Comparison of the upper bound µ/2 to the maximum devia-
tion achieved by ComputeMaxDevRadeBound (µub

R /2), and ComputeMaxDe-
vRadeApprox (µap

R /2) for each dataset. We show averages avg, maximum
values max, and standard deviations std for each dataset and method over
the 4 pseudo-artificial datasets.

Dataset
µ
ub
R /2 µ

ap
R /2

avg max std
(⇥10�3) avg max std

(⇥10�3)
BIBLE 0.0747 0.0748 0.1 0.0207 0.0223 1.5
BMS1 0.0287 0.0294 0.6 0.0136 0.0153 1.0
BMS2 0.0202 0.0207 0.5 0.0107 0.0115 0.5

KOSARAK 0.0957 0.0972 1.5 0.0145 0.0164 1.5
LEVIATHAN 0.1878 0.1904 1.6 0.0569 0.0636 5.5

MSNBC 0.0252 0.0257 0.9 0.0035 0.0041 0.4

the false negatives, using the tightest upper bounds µ
ap
R /2 (from Table 3.3)

computed with an approximation of the empirical Rademacher complexity.
From each pseudo-artificial dataset, we mined the frequent sequential pat-
terns using ✓̂, for the first strategy, and ✓̃, for the second one, respectively
computed using Theorem 5 and Theorem 6, and we compared the sequen-
tial patterns extracted with the true frequent sequential patterns from the
ground truth. Table 3.4 shows the results for both strategies with guaran-
tees on the false positives and false negatives. Using µ

ap
R /2 to compute the

corrected frequency thresholds ✓̂ and ✓̃, our algorithms provide outputs that
satisfy, respectively, the guarantees of Theorem 5 and Theorem 6 in all the
runs. This means that, using ✓̂, the sequential patterns in output are always
true frequent sequential patterns (i.e., there are no false positives), and, ✓̃,
the output contains all the true frequent sequential patterns (i.e., there are
no false negatives). Thus, our algorithms perform even better than guaran-
teed by their theoretical analysis, which state that there are no false positives
or false negatives with probability at least 1 � �. Then, we computed the
average fraction |FSP (Di, ✓̂)|/|TFSP | of true frequent sequential patterns
reported in the FPF µ-approximations, that is, the ratio of true frequent
sequential patterns captured by our algorithm. We also computed the av-
erage fraction |TFSP |/|FSP (Di, ✓̃)| of sequential patterns reported in the
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FNF µ-approximations that are true frequent sequential patterns, that is,
the ratio of reported sequential patterns that are not false positives. Note
that the best case for such ratios is to be as close to 1 as possible. How-
ever, our algorithms are not designed to provide theoretical guarantees in
such terms and, in fact, such ratios are not very high for some datasets, e.g.,
BMS1, BMS2, and LEVIATHAN (see Table 3.4). Note that LEVIATHAN
is a small dataset (only 5835 transactions, see Table 3.1), while BMS1 and
BMS2 contain very short transactions (average transaction item-length of
2.5 and 4.6 respectively, see Table 3.1). Instead, the ratios become higher if
computed on the other larger (in terms of number of transactions or average
transaction item-length) datasets, i.e. BIBLE, KOSARAK, and MSNBC.
This is consistent with the fact that our strategy to bound the maximum de-
viation and then to approximate true frequent sequential patterns strongly
depends on the size of the datasets.

To conclude, our experimental evaluation shows that our algorithms to
mine true frequent sequential patterns with rigorous guarantees are valid
strategies to obtain high-quality approximations, both without false positives
or false negatives.

44



3.5. EXPERIMENTAL EVALUATION

Table 3.4: Results of our algorithms to mine true frequent sequential pat-
terns, with guarantees on false negatives or false positives. The table
shows: the dataset D; the minimum frequency threshold ✓; the number
|TFSP| of true frequent sequential patterns in the ground truth; FNF µ-
approx. (%): percentage of FNF µ-approximation obtained in all the runs;
|TFSP|/|FSP(Di, ✓̃)|: average fraction of sequential patterns reported in the
FNF µ-approximations that are true frequent sequential patterns; FPF µ-
approx. (%): percentage of FPF µ-approximation obtained in all the runs;
|FSP(Di, ✓̂)|/|TFSP|: average fraction of true frequent sequential patterns
reported in the FPF µ-approximations.

Dataset D ✓ |TFSP| FNF µ-approx. (%) |TFSP|/
|FSP(Di, ✓̃)|

FPF µ-approx. (%) |FSP(Di, ✓̂)|/
|TFSP|

BIBLE 0.1 174 100 0.63 100 0.68
0.05 774 100 0.33 100 0.47

BMS1 0.025 13 100 0.21 100 0.48
0.0025 17 100 0.19 100 0.43

BMS2 0.025 10 100 0.32 100 0.20
0.0025 11 100 0.19 100 0.18

KOSARAK 0.06 23 100 0.64 100 0.73
0.04 41 100 0.49 100 0.74

LEVIATHAN 0.15 225 100 0.30 100 0.41
0.1 651 100 0.13 100 0.30

MSNBC 0.02 97 100 0.77 100 0.77
0.015 143 100 0.65 100 0.76
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Chapter 4

SPRISS: Approximating Frequent
k-mers by Sampling Reads

4.1 Introduction
The study of substrings of length k, or k-mers, is a fundamental task in the
analysis of large next-generation sequencing datasets. The extraction of k-
mers, and of the frequencies with which they appear in a dataset of reads, is a
crucial step in many applications, e.g., the comparison of datasets and reads
classification in metagenomics [Wood and Salzberg, 2014], error correction
for genome assembly [Kelley et al., 2010, Salmela et al., 2016], and several
others (see Section 5.1.2).

k-mers and their frequencies can be obtained with a linear scan of a
dataset. However, due to the massive size of the modern datasets and the
exponential growth of the k-mers number (with respect to k), the extraction
of k-mers is an extremely computationally intensive task, both in terms of
running time and memory [Elworth et al., 2020], and several algorithms have
been proposed to reduce the running time and memory requirements (see
Section 4.1.2). Nonetheless, the extraction of all k-mers and their frequencies
from a reads dataset is still highly demanding in terms of time and memory
(e.g., KMC 3 [Kokot et al., 2017], one of the currently best performing tools
for k-mer counting, requires more than 2.5 hours, 34 GB of memory, and
500 GB of space on disk on a sequence of 729 Gbases [Kokot et al., 2017],
and from our experiments more than 30 minutes, 300 GB of memory, and
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97 GB of disk space for counting k-mers from Mo17 dataset1).
While some applications, such as error correction [Kelley et al.,

2010, Salmela et al., 2016] or reads classification [Wood and Salzberg, 2014],
require to identify all k-mers, even the ones that appear only once or few
times in a dataset, other analyses, such as the comparison of abundances in
metagenomic datasets [Benoit et al., 2016, Danovaro et al., 2017, Dickson
et al., 2017, Pellegrina et al., 2020] or the discovery of k-mers discriminat-
ing between two datasets [Ounit et al., 2015, Liu et al., 2017], hinge on the
identification of frequent k-mers, which are k-mers appearing with a (rela-
tively) high frequency in a dataset. For the latter analyses, tools capable
of efficiently extracting frequent k-mers only would be extremely beneficial
and much more efficient than tools reporting all k-mers (given that a large
fraction of k-mers appear with extremely low frequency). However, the effi-
cient identification of frequent k-mers and their frequencies is still relatively
unexplored (see Section 4.1.2).

A natural approach to speed-up the identification of frequent k-mers is
to analyze only a sample of the data, since frequent k-mers appear with
high probability in a sample, while unfrequent k-mers appear with lower
probability. A major challenge in sampling approaches is how to rigorously
relate the results obtained analyzing the sample and the results that would
be obtained analyzing the whole dataset. Tackling such challenge requires
to identify a minimum sample size which guarantees that the results on the
sample well represent the results to be obtained on the whole dataset. An
additional challenge in the use of sampling for the identification of frequent k-
mers is due to the fact that, for values of k of interest in modern applications
(e.g., k 2 [20, 60]), even the most frequent k-mers appear in a relatively low
portion of the data (e.g., 10�7-10�5). The net effect is that the application
of standard sampling techniques to rigorously approximate frequent k-mers
results in sample sizes larger than the initial dataset.

4.1.1 Our Contributions

We study the problem of approximating frequent k-mers in a dataset of reads.
In this regard, our contributions are:

• We propose SPRISS, SamPling Reads algorIthm to eStimate frequent
1Using k = 31, 32 workers, and maximum RAM of 350 GB. See Supplemental Table 5.1

for the size of Mo17.
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k-merS 2. SPRISS is based on a simple yet powerful read sampling
approach, which renders SPRISS very flexible and suitable to be used
in combination with any k-mer counter. In fact, the read sampling
scheme of SPRISS returns a subset of a dataset of reads, which can be
used to obtain representative results for down-stream analyses based
on frequent k-mers.

• We prove that SPRISS provides rigorous guarantees on the quality of
the approximation of the frequent k-mers. In this regard, our main
technical contribution is the derivation of the sample size required by
SPRISS, obtained through the study of the pseudodimension [Pollard,
1984], a key concept from statistical learning theory, of k-mers in reads.

• We show on several real datasets that SPRISS approximates frequent
k-mers with high accuracy, while requiring a fraction of the time needed
by approaches that analyze all k-mers in a dataset.

4.1.2 Related Works

The problem of exactly counting k-mers in datasets has been extensively
studied, with several methods proposed for its solution [Kurtz et al.,
2008, Marçais and Kingsford, 2011, Melsted and Pritchard, 2011, Rizk
et al., 2013, Audano and Vannberg, 2014, Roy et al., 2014, Kokot et al.,
2017, Pandey et al., 2017]. Such methods are typically highly demanding in
terms of time and memory when analyzing large high-throughput sequenc-
ing datasets [Elworth et al., 2020]. For this reason, many methods have been
recently developed to compute approximations of the k-mers abundances to
reduce the computational cost of the task (e.g, [Melsted and Halldórsson,
2014, Sivadasan et al., 2016, Mohamadi et al., 2017, Chikhi and Medvedev,
2013, Zhang et al., 2014, Pandey et al., 2017]). However, such methods
do not provide guarantees on the accuracy of their approximations that
are simultaneously valid for all (or the most frequent) k-mers. In recent
years other problems closely related to the task of counting k-mers have
been studied, including how to efficiently index [Pandey et al., 2018, Harris
and Medvedev, 2020, Marchet et al., 2020b, Marchet et al., 2020a], repre-
sent [Chikhi et al., 2014, Dadi et al., 2018, Almodaresi et al., 2018, Guo
et al., 2019, Marchet et al., 2019b, Holley and Melsted, 2020, Rahman and
Medvedev, 2020], query [Solomon and Kingsford, 2016, Solomon and Kings-

2
https://vec.wikipedia.org/wiki/Spriss
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ford, 2018, Yu et al., 2018, Sun et al., 2018, Bradley et al., 2019, Marchet
et al., 2019a], and store [Hosseini et al., 2016, Numanagić et al., 2016, Her-
naez et al., 2019, Rahman et al., 2020] the massive collections of sequences
or of k-mers that are extracted from the data. See also [Chikhi et al., 2021]
for a unified presentation of methods to store and query a set of k-mers.

A natural approach to reduce computational demands is to analyze a
small sample instead of the entire dataset. To this end, methods that per-
form a downsampling of massive datasets have been recently proposed [Brown
et al., 2012, Wedemeyer et al., 2017, Coleman et al., 2019]. These methods
focus on discarding reads of the datasets that are very similar to the reads
already included in the sample, computing approximate similarity measures
as each read is considered. Such measures (i.e., the Jaccard similarity) are
designed to maximise the diversity of the content of the reads in the sample.
This approach is well suited for applications where rare k-mers are impor-
tant, but they are less relevant for analyses, of interest to this work, where
the most frequent k-mers carry the major part of the information. Further-
more, these methods have a heuristic nature, and do not provide guarantees
on the relation between the accuracy of the analysis performed on the sample
w.r.t. the analysis performed on the entire dataset. SAKEIMA [Pellegrina
et al., 2020] is the first sampling method that provides an approximation of
the set of frequent k-mers (together with their estimated frequencies) with
rigorous guarantees, based on counting only a subset of all occurrences of
k-mers, chosen at random. SAKEIMA performs a full scan of the entire
dataset, in a streaming fashion, and processes each k-mer occurrence accord-
ing to the outcome of its random choices. SPRISS, the algorithm we present
in this work, is instead the first sampling algorithm to approximate frequent
k-mers (and their frequencies), with rigorous guarantees, by sampling reads

from the dataset. In fact, SPRISS does not require to receive in input and to
scan the entire dataset, but, instead, it needs in input only a small sample of
reads drawn from the dataset, sample that may be obtained, for example, at
the time of the physical creation of the whole dataset. While the sampling
strategy of SAKEIMA could be analyzed using the concept of VC dimen-

sion [Vapnik, 1998], the reads-sampling strategy of SPRISS requires the more
sophisticated concept of pseudodimension [Pollard, 1984] for its analysis.
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4.1.3 Organization of the Chapter

The rest of the Chapter is organized as follows. In Section 4.2 we intro-
duce some preliminary concepts used throughout this work. A first, simple,
warm-up approach to approximate frequent k-mers is presented in Section
4.3. Next, a first improvement to the warm-up approach is presented in Sec-
tion 4.4. Then, in Section 4.5 we describe SPRISS, our rigorous and efficient
algorithm to estimate frequent k-mers. Finally, in Section 4.6 we present
our experimental evaluation where we assess the quality of the approxima-
tion of the frequent k-mers provided by SPRISS, and compare SPRISS with
SAKEIMA.

4.2 Preliminaries
Let ⌃ be an alphabet of � symbols. A dataset D = {r1, . . . , rn} is a bag
of |D| = n reads, where, for i 2 {1, . . . , n}, a read ri is a string of length
ni built from ⌃. For a given integer k, a k-mer K is a string of length k

on ⌃, that is K 2 ⌃k. Given a k-mer K, a read ri of D, and a position
j 2 {0, . . . , ni � k}, we define the indicator function �ri,K(j) to be 1 if K
appears in ri at position j, that is K[h] = ri[j + h] 8h 2 {0, . . . , k � 1},
while �ri,K(j) is 0 otherwise. The size tD,k of the multiset of k-mers that
appear in D is tD,k =

P
ri2D(ni � k + 1). The average size of the multiset of

k-mers that appear in a read of D is gD,k = tD,k/n, while the maximum value
of such quantity is gmax,D,k = maxri2D(ni � k + 1). The support oD(K) of
k-mer K in dataset D is the number of distinct positions of D where k-mer
K appears, that is oD(K) =

P
ri2D

Pni�k
j=0 �ri,K(j). The frequency fD(K) of

a k-mer K in D is the fraction of all positions in D where K appears, that
is fD(K) = oD(K)/tD,k.

The task of finding frequent k-mers (FKs) is defined as follows: given a
dataset D, a positive integer k, and a minimum frequency threshold ✓ 2 (0, 1],
find the set FK(D, k, ✓) of all the k-mers whose frequency in D is at least ✓,
and their frequencies, that is FK(D, k, ✓) = {(K, fD(K)) : K 2 ⌃k

, fD(K) �
✓}.

The set of frequent k-mers can be computed by scanning the dataset and
counting the number of occurrences for each k-mers. However, when dealing
with a massive dataset D, the exact computation of the set FK(D, k, ✓)
requires large amount of time and memory. For this reason, one could instead
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focus on finding an approximation of FK(D, k, ✓) with rigorous guarantees on
its quality. In this work we consider the following approximation, introduced
in [Pellegrina et al., 2020], which represents Definition 3 where the patterns
are k-mers.

Definition 11. Given a dataset D, a positive integer k, a frequency threshold

✓ 2 (0, 1], and an accuracy parameter " 2 (0, ✓), a FNF "-approximation
C = {(K, fK) : K 2 ⌃k

, fK 2 [0, 1]} of FK(D, k, ✓) is a set of pairs (K, fK)
with the following properties:

• C contains a pair (K, fK) for every (K, fD(K)) 2 FK(D, k, ✓);

• C contains no pair (K, fK) such that fD(K) < ✓ � ";

• for every (K, fK) 2 C, it holds |fD(K)� fK |  "/2.

Intuitively, the FNF approximation C contains no false negatives (i.e. all
the frequent k-mers in FK(D, k, ✓) are in C) and no k-mer whose frequency
in D is much smaller than ✓. In addition, the frequencies in C are good
approximations of the actual frequencies in D, i.e. within a small error "/2.

Definition 12. Given a dataset D of n reads, we define a reads sample S

of D as a bag of m reads, sampled independently and uniformly at random,

with replacement, from the bag of reads in D.

A natural way to compute an approximation of the set of frequent k-mers
is by processing a sample, i.e. a small portion of the dataset D, instead of the
whole dataset. While previous work [Pellegrina et al., 2020] considered sam-
ples obtained by drawing k-mers independently from D, we consider samples
obtained by drawing entire reads. Note that the development of an effi-
cient scheme to effectively approximate the frequency of all frequent k-mers
by sampling reads is highly nontrivial, due to dependencies among k-mers
appearing in the same read. As explained in Section 4.1.1, our approach
has several advantages, including the fact that it can be combined with any
efficient k-mer counting procedure, and that it can be used to extract a rep-

resentative subset of the data on which to conduct down-stream analyses
obtaining, in a fraction of the time required to process the whole dataset,
the same insights. Such representative subsets could be stored and used for
exploratory analyses, with a gain in terms of space and time requirements
compared to using the whole dataset. Additionally, note that SPRISS can
approximate both canonical or non-canonical k-mers.
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In the next sections, we develop and analyze algorithms to approximate
FK(D, k, ✓) by read sampling, starting from a straightforward, but ineffi-
cient, approach (Section 4.3), then showing how pseudodimension can be
used to improve the sample size required by such approach (Section 4.4),
and culminating in our algorithm SPRISS, the first efficient algorithm to
approximate frequent k-mers by read sampling (Section 4.5).

4.3 Warm-Up: A Simple Algorithm for Ap-
proximating Frequent k-mers by Sampling
Reads

A first, simple approach to approximate the set FK(D, k, ✓) of frequent k-
mers consists in taking a sample S of m reads, with m large enough, and
report in output the set FK(S, k, ✓ � "/2) of k-mers that appear with fre-
quency at least ✓ � "/2 in the sample S. This strategy is motivated by
Proposition 4, obtained by combining Hoeffding’s inequality [Mitzenmacher
and Upfal, 2017] and a union bound, which provides an upper bound to the
number m of reads required to have guarantees on the quality of the approx-
imation. Before stating and proving Proposition 4, we need to introduce and
prove some preliminary results.

Proposition 1. The expectation E[tS,k] of the size of the multiset of k-mers

that appear in S is mgD,k.

Proof. Let X(ri) = ni � k + 1 be the number of starting positions for
k-mers in read ri sampled uniformly at random form D, i 2 {1, . . . , n}.
E[X(ri)] =

P
ri2D

1
n(ni � k + 1) = gD,k. Combining this with the linearity of

the expectation, we have:

E[tS,k] = E
"
X

ri2S

(ni � k + 1)

#
=
X

ri2S

E[ni � k + 1]

= mE[X(ri)] = mgD,k.

Given a k-mer K, its support oS(K) in S is oS(K) =P
ri2S

Pni�k
j=0 �ri,K(j). We define the frequency of K in S as fS(K) =
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oS(K)/(mgD,k), that is the ratio between the support of K and the expecta-
tion E[tS,k] = mgD,k of the size of the multiset of k-mers that appear in S.
This definition of fS(K) gives us an unbiased estimator for fD(K).

Proposition 2. The frequency fS(K) = oS(K)/(mgD,k) is an unbiased esti-

mator for fD(K) = oD(K)/tD,k.

Proof. Let Xri(K) =
Pni�k

j=0 �ri,K(j) be the number of distinct positions
where k-mer K appears in read ri sampled uniformly at random form D,
i 2 {1, . . . , n}. E[Xri(K)] =

P
ri2D

⇣
1
n

Pni�k
j=0 �ri,K(j)

⌘
= oD(K)/n. Com-

bining this with the linearity of the expectation, we have:

E[fS(K)] =
E[oS(K)]

mgD,k
=

E[
P

ri2S
Pni�k

j=0 �ri,K(j)]

mgD,k
=

=
E[Xri(K)]

gD,k
=

oD(K)

ngD,k
=

oD(K)

tD,k
= fD(K).

By using the sampling framework based on reads and Hoeffding’s in-
equality [Mitzenmacher and Upfal, 2017], we prove the following bound on
the probability that fS(K) is not within "/2 from fD(K), for an arbitrary
k-mer K.

Proposition 3. Consider a sample S of m reads from D. Let gmax,D,k =
maxri2D(ni�k+1). Let K 2 ⌃k

be an arbitrary k-mer. For a fixed accuracy

parameter " 2 (0, 1) we have:

Pr
⇣
|fS(K)� fD(K)| � "

2

⌘
 2 exp

 
�1

2
m"

2

✓
gD,k

gmax,D,k

◆2
!
.

Proof. The frequency fS(K) = oS(K)/(mgD,k) of K in S can be rewritten
as:

fS(K) =

P
ri2S

Pni�k
j=0 �ri,K(j)

mgD,k

=
X

ri2S

ni�kX

j=0

�ri,K(j)

mgD,k
=
X

ri2S

�̂K(ri),
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where the random variable (r.v.) �̂K(ri) =
Pni�k

j=0
�ri,K

(j)

mgD,k
is the number of

times K appears in read ri divided by mgD,k. Thus, fS(K) can be rewritten
as a sum of m independent r.v. that take values in [0, gmax,D,k

mgD,k
]. Combining

this fact with Proposition 2, and by applying Hoeffding’s inequality [Mitzen-
macher and Upfal, 2017] we have:

Pr(|fS(K)� fD(K)| � "

2
)  2 exp

0

B@
�2("/2)2

m

⇣
gmax,D,k

mgD,k

⌘2

1

CA

= 2 exp

 
�1

2
m"

2

✓
gD,k

gmax,D,k

◆2
!
.

Since the maximum number of k-mers is �
k, by combining the result

above with the union bound we have the following result.

Proposition 4. Consider a sample S of m reads from D. For fixed frequency

threshold ✓ 2 (0, 1], error parameter " 2 (0, ✓), and confidence parameter

� 2 (0, 1), if

m � 2

"2

✓
gmax,D,k

gD,k

◆2✓
ln
�
2�k
�
+ ln

✓
1

�

◆◆

then, with probability � 1 � �, FK(S, k, ✓ � "/2) is a FNF "-approximation

of FK(D, k, ✓).

Proof. Let EK be the event “ |fS(K) � fD(K)|  "
2 ” for a k-mer K. By the

choice of m and Proposition 3 we have that the probability of the comple-
mentary event EK of EK is

Pr(EK) = Pr
⇣
|fS(K)� fD(K)| � "

2

⌘

= 2 exp

 
�1

2
m"

2

✓
gD,k

gmax,D,k

◆2
!
 �

�k
.

Now, by applying the union bound, the probability that for at least one k-
mer K of ⌃k the event EK holds is bounded by

P
K2⌃k Pr(EK)  �. Thus,

the probability that events EK simultaneously hold for all k-mers K in ⌃k is
at least 1� �.
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Now we prove that, with probability at least 1� �, FK(S, k, ✓� "/2) is a
FNF "-approximation of FK(D, k, ✓), when, with probability at least 1� �,
“|fS(K) � fD(K)|  "

2 ” for all k-mers K. Note that the third property of
Definition 11 is already satisfied. Let K be a k-mer of FK(D, k, ✓), that is
fD(K) � ✓. Given that fS(K) � fD(K)� "/2, we have fS(K) � ✓� "/2 and
the first property of Definition 11 holds. Combining fD(K) � fS(K) � "/2
and fS(K) � ✓ � "/2, we have fD(K) � ✓ � " and the second property of
Definition 11 holds.

Proposition 4 gives us the following simple procedure for approximating
the set of frequent k-mers with guarantees on the quality of the solution:
draw a sample S of m � 2

"2

⇣
gmax,D,k

gD,k

⌘2 �
ln
�
2�k
�
+ ln

�
1
�

��
reads from D,

and output the set FK(S, k, ✓ � "/2) which is a FNF "-approximation of
FK(D, k, ✓) with probability at least 1� �.

While Proposition 4 provides a first bound to the number m of reads re-
quired to obtain a rigorous approximation of the frequent k-mers, it typically
results in a sample size m larger than |D|, making the sampling approach
useless. This is due to the need for " to be small in order to obtain mean-
ingful approximations, since the frequencies of k-mers we are estimating are
small (see Section 4.6.2). Thus, in the next sections we propose advanced
methods to reduce the sample size m.

4.4 A First Improvement: A Pseudodimension-
based Algorithm for k-mers Approximation
by Sampling Reads

In this section we introduce the notion of pseudodimension and we use it to
improve the bound on the sample size m of Proposition 4.

Let F be a class of real-valued functions from a domain X to [a, b] ⇢ R.
Consider, for each f 2 F , the subset of X

0 = X ⇥ [a, b] defined as Rf =
{(x, t) : t  f(x)}, and call it range. Let F+ = {Rf , f 2 F} be a range set

on X
0, and its corresponding range space Q

0 be Q0 = (X 0
,F+). We say that a

subset D ⇢ X
0 is shattered by F+ if the size of the projection set projF+(D) =

{r \ D : r 2 F+} is equal to 2|D|. The VC dimension V C(Q0) of Q0 is the
maximum size of a subset of X

0 shattered by F+. The pseudodimension

PD(X,F) is then defined as the VC dimension of Q0: PD(X,F) = V C(Q0).
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Let ⇡ be the uniform distribution on X, and let S be a sample of X of
size |S| = m, with every element of S sampled independently and uniformly
at random from X. We define, 8f 2 F , fS = 1

m

P
x2S f(x) and fX =

Ex⇠⇡[f(x)]. Note that E[fS] = fX . The following result relates the accuracy
and confidence parameters ",� and the pseudodimension with the probability
that the expected values of the functions in F are well approximated by their
averages computed from a finite random sample.

Proposition 5. ([Talagrand, 1994, Long, 1999])

Let X be a domain and F be a class of real-valued functions from X

to [a, b]. Let PD(X,F) = V C(Q0)  v. There exist an absolute positive

constant c such that, for fixed ", � 2 (0, 1), if S is a random sample of m

samples drawn independently and uniformly at random from X with m �
c(b�a)2

"2

�
v + ln

�
1
�

��
then, with probability � 1 � �, it holds simultaneously

8f 2 F that |fS � fX |  ".

The universal constant c has been experimentally estimated to be at most
0.5 [Löffler and Phillips, 2009].

We now define the range space associated to k-mers, derive an upper
bound to its pseudodimension, and use the result above to derive an improved
bound on the number m of reads to be sampled in order to obtain a rigorous
approximation of the frequent k-mers. Let k be a positive integer and D
be a bag of n reads. Define the domain X as the set of integers {1, . . . , n},
where every i 2 X corresponds to the i-th read of D. Then define the family
of real-valued functions F = {fK , 8K 2 ⌃k} where, for every i 2 X and
for every fK 2 F , the function fK(i) is the number of distinct positions in
read ri where k-mer K appears divided by the average size of the multiset
of k-mers that appear in a read of D: fK(i) =

Pni�k
j=0

�ri,K
(j)

gD,k
. Therefore

fK(i) 2 [0, gmax,D,k

gD,k
]. For each fK 2 F , the subset of X 0 = X ⇥ [0, gmax,D,k

gD,k
]

defined as RfK = {(i, t) : t  fK(i)} is the associated range. Let F+ =
{RfK , fK 2 F} be the range set on X

0, and its corresponding range space Q
0

be Q
0 = (X 0

,F+).
A trivial upper bound to PD(X,F) is given by PD(X,F)  blog2 |F|c =

blog2 �kc. Before proving a tighter bound to PD(X,F), we first state a
technical Lemma (Lemma 3.8 from [Riondato and Upfal, 2018]).

Lemma 5. Let B ✓ X
0
be a set that is shattered by F+

. Then B does not

contain any element in the form (i, 0), for any i 2 X.

57



CHAPTER 4. SPRISS: APPROXIMATING FREQUENT K-MERS BY
SAMPLING READS

The following result provides an improved upper bound to PD(X,F).

Proposition 6. Let D be a bag of n reads, k a positive integer, X =
{1, . . . , n} be the domain, and let the family F of real-valued functions

be F = {fK , 8K 2 ⌃k}. Then the pseudodimension PD(X,F) satisfies

PD(X,F)  blog2(gmax,D,k)c+ 1.

Proof. From the definition of pseudodimension we have PD(X,F) =
V C(Q0), therefore showing V C(Q0) = v  blog2(gmax,D,k)c+1 is sufficient for
the proof. An immediate consequence of Lemma 5 is that for all elements
(i, t) of any set B that is shattered by F+ it holds t � 1/gD,k. Now we
denote an integer v and suppose that V C(Q0) = v. Thus, there must exist
a set B ✓ X

0 with |B| = v which needs to be shattered by F+. This means
that 2v subsets of B must be in projection of F+ on B. If this is true, then
every element of B needs to belong to exactly 2v�1 such sets. This means
that for a given (i, t) of B, all the projections of 2v�1 elements of F+ contain
(i, t). Since t � 1/gD,k, there need to exist 2v�1 distinct k-mers appearing at
least once in the read ri. More formally, it needs to hold ni � k + 1 � 2v�1,
that implies v  blog2(ni�k+1)c+1, 8(i, t) 2 B. Since ni�k+1  gmax,D,k

for each (i, t) 2 B, then v  blog2(gmax,D,k)c+ 1, and the thesis holds.

Combining Proposition 5 and Proposition 6, we derive the following.

Proposition 7. Let S be a sample of m reads from D. For fixed threshold

✓ 2 (0, 1], error parameter " 2 (0, ✓), and confidence parameter � 2 (0, 1), if

m � 2
"2

⇣
gmax,D,k

gD,k

⌘2 �
blog2 min(2gmax,D,k, �

k)c+ ln
�
1
�

��
then, with probability

� 1� �, FK(S, k, ✓ � "/2) is a FNF "-approximation of FK(D, k, ✓).

Proof. Let consider the domain X and the class of real-valued functions F
previously defined. For a given function f 2 F (so for a given k-mer K), we
have for fX = Ex⇠⇡[f(x)] that

fX = Eri⇠D[fK(i)] = Eri⇠D

"
ni�kX

j=0

�ri,K(j)

gD,k

#

=
1

gD,k

X

ri2D

1

n

ni�kX

j=0

�ri,K(j) =
oD(K)

ngD,k
= fD(K),
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and for fS = 1
m

P
x2S f(x) that

fS =
1

m

X

ri2S

fK(i) =
1

m

X

ri2S

ni�kX

j=0

�ri,K(j)

gD,k
=

oS(K)

mgD,k
= fS(K).

Combining the trivial bound PD(X,F)  blog2 �kc with Propositions 5
and 6 we have that, with probability at least 1� �, |fS(K)� fD(K)|  "/2
simultaneously holds for every k-mer K.

Now, as for Proposition 4, we prove that, with probability at least 1� �,
FK(S, k, ✓ � "/2) is a FNF "-approximation of FK(D, k, ✓), when, with
probability at least 1��, “|fS(K)�fD(K)|  "

2 ” for all k-mers K. Note that
the third property of Definition 11 is already satisfied. Let K be a k-mer of
FK(D, k, ✓), that is fD(K) � ✓. Given that fS(K) � fD(K)� "/2, we have
fS(K) � ✓ � "/2 and the first property of Definition 11 holds. Combining
fD(K) � fS(K)� "/2 and fS(K) � ✓� "/2, we have fD(K) � ✓� " and the
second property of Definition 11 holds.

This bound significantly improves on the one in Proposition 4, since the
factor ln(2�k) is reduced to blog2 min(2gmax,D,k, �

k)c. However, even the
bound from Proposition 7 results in a sample size m larger than |D| (see
Section 4.6.2). In the next section we propose a method to further reduce
the sample size m, which results in a practical sampling approach.

4.5 SPRISS: Sampling Reads Algorithm to Es-
timate Frequent k-mers

In this section, we develop and analyze our algorithm SPRISS, the first effi-
cient algorithm to approximate frequent k-mers by read sampling.

Let D be a bag of n reads. We define I` = {i1, i2, . . . , i`} as a bag of `
indexes of reads of D chosen uniformly at random, with replacement, from
the set {1, . . . , n}. Then we define an `-reads sample S` as a collection
of m bags of ` reads S` = {I`,1, . . . , I`,m}. Now we need to formulate a
new definition of range space Q

0 = (X 0
,F+) associated to k-mers, which

requires to define a new domain X and a new class of real-valued functions
F . Let k be a positive integer. Define the domain X as the set of bags
of ` indexes of reads of D. Then define the family of real-valued functions
F = {fK,`, 8K 2 ⌃k} where, for every I` 2 X and for every fK,` 2 F , we
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have fK,`(I`) = min(1, oI`(K))/(`gD,k), where oI`(K) =
P

i2I`

Pni�k
j=0 �ri,K(j)

counts the number of occurrences of K in all the ` reads of I`. Therefore
fK,`(I`) 2 {0, 1

`gD,k
} 8fK,` and 8I`. Note that, for a given bag I`, the functions

fK,` have value equal to 1/`gD,k even if K appears more than once in all the
` reads of I`, thus ignoring multiple occurrences of K in the bag. For each
fK,` 2 F , the subset of X 0 = X ⇥ {0, 1

`gD,k
} defined as RfK,`

= {(I`, t) : t 
fK,`(I`)} is the associated range. Let F+ = {RfK,`

, fK,` 2 F} be the range
set on X

0, and its corresponding range space Q
0 be Q

0 = (X 0
,F+). We now

prove an upper bound to the pseudodimension PD(X,F).

Proposition 8. Let D be a bag of n reads, and k a positive integer. Let

the domain X be the set of bags of ` indexes of reads of D, and F =
{fK,`, 8K 2 ⌃k} be the family of real-valued functions. Then the pseudodi-

mension PD(X,F) satisfies

PD(X,F)  blog2(`gmax,D,k)c+ 1. (4.1)

Proof. From the definition of pseudodimension we have PD(X,F) =
V C(Q0), therefore showing V C(Q0) = v  blog2(`gmax,D,k)c + 1 is sufficient
for the proof. Since Lemma 5 is also valid for the new definition of the range
space Q

0 = (X 0
,F+), an immediate consequence is that for all elements (i, t)

of any set B that is shattered by F+ it holds t � 1/(`gD,k). Now we denote
an integer v and suppose that V C(Q0) = v. Thus, there must exist a set
B ✓ X

0 with |B| = v which needs to be shattered by F+. This means that
2v subsets of B must be in projection of F+ on B. If this is true, then every
element of B needs to belong to exactly 2v�1 such sets. This means that for
a given (I`, t) of B, all the projections of 2v�1 elements of F+ contain (I`, t).
Since t � 1/(`gD,k), there need to exist 2v�1 distinct k-mers appearing at
least once in the bag of ` reads associated with I`. More formally, it needs to
hold

P
i2I`(ni� k+ 1) � 2v�1, that implies v  blog2

P
i2I`(ni� k+ 1)c+ 1,

8(I`, t) 2 B. Since ni � k + 1  gmax,D,k for each (I`, t) 2 B and i 2 I`, then
v  blog2(`gmax,D,k)c+ 1, and the thesis holds.

We define the frequency fS`
(K) of a k-mer K obtained from the sample S`

of bags of reads as fS`
(K) = 1

m

P
I`,i2S`

oI`(K)/(`gD,k), which is an unbiased
estimator of fD(K) (i.e., E[fS`

(K)] = fD(K)). While the unbiased estimate
fS`

(K) is the frequency reported by SPRISS as the estimated frequency of a
k-mer K, SPRISS selects the k-mers to produce in output using a different
estimate, namely f̂S`

(K) = 1
m

P
I`,i2S`

fK,`(I`,i), which is a “biased” version of
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fS`
(K) since multiple occurrences of K in a bag are ignored. The technical

motivation to use the biased frequency f̂S`
(K) can be found in the rest of

this section.
Before showing an improved bound on the sample size, we need some

additional but necessary results. In order to find a relation between E[f̂S`
(K)]

and fD(K), we need the following proposition.

Proposition 9. Let f̃D(K) =
P

ri2D (K 2 ri)/n and fD(K) = oD(K)/tD,k.

It holds that:
gD,k

gmax,D,k
fD(K)  f̃D(K)  gD,kfD(K).

Proof. Let us rewrite f̃D(K):

f̃D(K) =
X

ri2D

(K 2 ri)

n
.

Since (K 2 ri)  ori(K) for every i 2 {1, . . . , n}, we have

f̃D(K) 
X

ri2D

ori(K)

n
= gD,k

X

ri2D

ori(K)

gD,kn
= gD,kfD(K).

Then, since (K 2 ri) � ori(K)/gmax,D,k for every i 2 {1, . . . , n}, we have

f̃D(K) �
X

ri2D

ori(K)

gmax,D,kn
=

gD,k

gmax,D,k

X

ri2D

ori(K)

gD,kn
=

gD,k

gmax,D,k
fD(K).

Now we show a relation between E[f̂S`
(K)] and fD(K).

Proposition 10. Let f̃D(K) =
P

ri2D (K 2 ri)/n and fD(K) =
oD(K)/tD,k. Let S` be a bag of m bags of ` reads drawn from D. Then:

E[f̂S`
(K)] � 1

`gD,k

 
1�

✓
1� gD,k

gmax,D,k
fD(K)

◆`
!
.

Proof. Let us rewrite E[f̂S`
(K)]:

E[f̂S`
(K)] =

1

`gD,k
E[min(1, oI`(K))] =

1

`gD,k
Pr(oI`(K) > 0).

61



CHAPTER 4. SPRISS: APPROXIMATING FREQUENT K-MERS BY
SAMPLING READS

Then, we have

E[f̂S`
(K)] =

1

`gD,k
Pr(oI`(K) > 0) =

1

`gD,k
(1� Pr(oI`(K) = 0))

=
1

`gD,k
(1�

Y

i2I`

Pr(ori(K) = 0)) =
1

`gD,k
(1� (1� f̃D(K))`),

and since f̃D(K) � gD,k

gmax,D,k
fD(K) by Proposition 9, the thesis holds.

Let ✓ be a minimum frequency threshold. Using the previous proposition,
if

fD(K) � gmax,D,k

gD,k
(1� (1� `gD,k✓)

1/`)

with `  1/(gD,k✓), then E[f̂S`
(K)] � ✓.

SPRISS (Algorithm 4) is motivated by our main technical result, Propo-
sition 11, which establishes a rigorous relation between the number m of
bags of ` reads and the guarantees obtained by approximating the frequency
fD(K) of a k-mer K with its (biased) estimate f̂S`

(K).

Proposition 11. Let k and ` be two positive integers. Consider a sample S`

of m bags of ` reads from D. For fixed frequency threshold ✓ 2 (0, 1], error

parameter " 2 (0, ✓), and confidence parameter � 2 (0, 1), if

m � 2

"2

✓
1

`gD,k

◆2✓
blog2 min(2`gmax,D,k, �

k)c+ ln

✓
1

�

◆◆
(4.2)

then, with probability at least 1� �:

i) for any k-mer K 2 FK(D, k, ✓) such that fD(A) � ✓̃ = gmax,D,k

gD,k
(1 �

(1� `gD,k✓)1/`) it holds f̂S`
(K) � ✓ � "/2;

ii) for any k-mer K with f̂S`
(K) � ✓ � "/2 it holds fD(K) � ✓ � ";

iii) for any k-mer K 2 FK(D, k, ✓) it holds fD(K) � f̂S`
(K)� "/2;

iv) for any k-mer K with `gD,k(f̂S`
(K) + "/2)  1 it holds fD(K) 

gmax,D,k

gD,k
(1� (1� `gD,k(f̂S`

(K) + "/2))(1/`)).
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Proof. Let us consider f̂S`
(K) = 1

m

P
I`,i2S`

fK,`(I`,i) and its expectation
E[f̂S`

(K)] = E[fK,`(I`,i)], which is taken with respect to the uniform distribu-
tion over bags of ` reads. By using Proposition 5, Proposition 8, and by the
choice of m, we have that with probability at least 1�� it holds |E[f̂S`

(K)]�
f̂S`

(K)|  "/2 for every k-mer K, which implies f̂S`
(K) � E[f̂S`

(K)] � "/2.
Using Proposition 10, when fD(K) � gmax,D,k

gD,k
(1 � (1 � `gD,k✓)1/`), then

E[f̂S`
(K)] � ✓ and the first part holds.

By the definitions of f̂S`
(K) and fS`

(K) we have E[f̂S`
(K)] 

E[fS`
(K)] = fD(K). From the proof of the first part we have |E[f̂S`

(K)] �
f̂S`

(K)|  "/2 for every k-mer K. If we consider a k-mer K with fD(K) <
✓ � " we have f̂S`

(K)  E[f̂S`
(K)] + "/2  fD(K) + "/2 < ✓ � "/2 and the

second part holds.
Since fD(K) � E[f̂S`

(K)] and |E[f̂S`
(K)]� f̂S`

(K)|  "/2 for every k-mer
K, we have E[f̂S`

(K)] � f̂S`
(K)� "/2 and the third part holds.

By Proposition 10 we have fD(K)  gmax,D,k

gD,k
(1�(1�`gD,kE[f̂S`

(K)])(1/`)).
Using the fact that E[f̂S`

(K)]  f̂S`
(K) + "/2 for every k-mer K, the last

part holds.

SPRISS builds on Proposition 11, and returns the approximation of
FK(D, k, ✓) defined by the set A = {(K, fS`

(K)) : f̂S`
(K) � ✓ � "/2}.

Therefore, with probability at least 1� � the output of SPRISS provides the
guarantees stated in Proposition 11. Note that, given a sample S` of m bags
of ` reads from D, with m satisfying the condition of Proposition 11, the set
A is almost a FNF "-approximation of FK(D, k, ✓): Proposition 11 ensures
that all k-mers in A have frequency fD(K) � ✓ � " with probability at least
1 � �, but it does not guarantee that all k-mers with frequency 2 [✓, ✓̃) will
be in output. However, we show in Section 4.6.2 that, in practice, almost all
of them are reported in output by SPRISS. Furthermore, we remark that it
is possible to obtain different guarantees on the approximation computed by
SPRISS by modifying the criteria used to report k-mers in output; for exam-
ple, in some applications perfect recall may be particularly important. To
this aim, we note that by reporting all k-mers with upper bound � ✓ (where
the upper bound to fD(K) is given by iv) in Proposition 11) we obtain that
all frequent k-mers are in the approximation, with relaxed guarantees on the
precision (i.e., some k-mers with frequency < ✓ � " may be in the output).

Now, let us describe in details our algorithm SPRISS (Algorithm 4).
SPRISS starts by computing the number m of bags of ` reads as in Equa-
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tion 4.2, based on the input parameters k, ✓, �, ", ` and on the characteristics
(gD,k, gmax,D,k, �) of dataset D. It then draws a sample S of exactly m` reads,
uniformly and independently at random, with replacement, from D. Next,
it computes for each k-mer K the number of occurrences oS(K) of K in
sample S, using any exact k-mers counting algorithm. We denote the call of
this method by exact_counting(S, k), which returns a collection T of pairs
(K, oS(K)). The sample S is then randomly partitioned into m bags, where
each bag contains exactly ` reads. For each k-mer K, SPRISS computes the
biased frequency f̂S`

(K) and the unbiased frequency fS`
(K), reporting in

output only k-mers with biased frequency at least ✓ � "/2. Note that the
estimated frequency of a k-mer K reported in output is always given by the
unbiased frequency fS`

(K).

Algorithm 4: SPRISS(D, k, ✓, �, ", `)

Data: D, k, ✓ 2 (0, 1], � 2 (0, 1), " 2 (0, ✓), integer ` � 1
Result: Approximation A of FK(D, k, ✓) with probability at least

1� �

1 m d 2
"2

⇣
1

`gD,k

⌘2 �
blog2 min(2`gmax,D,k, �

k)c+ ln
�
1
�

��
e;

2 S  sample of exactly m` reads drawn from D;
3 T  exact_counting(S, k);
4 S`  random partition of S into m bags of ` reads each;
5 A ;;
6 forall (K, oS(K)) 2 T do
7 SK  number of bags of S` where K appears;
8 f̂S`

(K) SK/(m`gD,k);
9 fS`

(K) oS(K)/(m`gD,k) ;
10 if f̂S`

(K) � ✓ � "/2 then A A [ (K, fS`
(K));

11 return A;

In practice, in Algorithm 4, the partition of S into m bags and the com-
putation of SK could be highly demanding in terms of running time and
space, since one has to compute and store, for each k-mer K, the exact
number SK of bags where K appears at least once among all reads of the
bag. We now describe a much more efficient approach to approximate the
values SK , without the need to explicitly compute the bags. The number
of reads in a given bag where K appears is well approximated by a Pois-
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son distribution Poisson(R[K]/m), where R[K] is the number of reads of
S where k-mer K appears at least once. Therefore, the number SK of bags
where K appears at least once is approximated by a binomial distribution
Binomial(m, 1�e

�R[K]/m). Thus, one can avoid to explicitly create the bags
and to exactly count SK , by replacing line “f̂S`

(K)  SK/(m`gD,k)” with
“f̂S`

(K) Binomial(m, 1�e�R[K]/m)/(m`gD,k)”. Corollary 5.11 of [Mitzen-
macher and Upfal, 2017] guarantees that, by using this Poisson distribution
to approximate SK , the output of SPRISS satisfies the properties of Propo-
sition 11 with probability at least 1 � 2�. This leads to the replacement of
“ ln(1/�)” with “ ln(2/�)” in the computation of m.

However, the approach described above requires to compute, for each
k-mer K, the number of reads R[K] of S where K appears at least once.
We believe such computation can be obtained with minimal effort within
the implementation of most k-mer counters, but we now describe a simple
way to approximate R[K]. Since most k-mers appear at most once in a
read, the number of reads R[K] where a k-mer K appears is well approx-
imated by the number of occurrences T [K] of K in the sample S. Thus,
instead of using “f̂S`

(K)  Binomial(m, 1 � e
�R[K]/m)/(m`gD,k)” we can

replace it with “f̂S`
(K)  Binomial(m, 1 � e

�T [K]/m)/(m`gD,k)”, which
only requires the counts T [K] obtained from the exact counting procedure
exact_counting(S, k) (see Algorithm 5). Note that approximating R[K]
with T [K] leads to overestimating the frequencies of few k-mers who reside
in very repetitive sequences, e.g. k-mers composed by the same k consecutive
nucleotides, for which T [K]� R[K]. However, since the majority of k-mers
reside in non-repetitive sequences, we can assume R[K] ⇡ T [K].

4.6 Experimental Evaluation
In this section we present the results of our experimental evaluation of
SPRISS. In Section 4.6.2 we assess the performance of SPRISS in approx-
imating the set of frequent k-mers from a dataset of reads. In particular,
we evaluate the accuracy of estimated frequencies and false negatives in the
approximation, and compare SPRISS with the state-of-the-art sampling algo-
rithm SAKEIMA [Pellegrina et al., 2020] in terms of sample size and running
time.
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Algorithm 5: SPRISS(D, k, ✓, �, ", `)

Data: D, k, ✓ 2 (0, 1], � 2 (0, 1), " 2 (0, ✓), integer ` � 1
Result: Approximation A of FK(D, k, ✓) with probability at least

1� 2�

1 m d 2
"2

⇣
1

`gD,k

⌘2 �
blog2 min(2`gmax,D,k, �

k)c+ ln
�
2
�

��
e;

2 S  sample of exactly m` reads drawn from D;
3 T  exact_counting(S, k);
4 A ;;
5 forall k-mers K 2 T do
6 f̂S`

(K) Binomial(m, 1� e
�T [K]/m)/(m`gD,k);

7 fS`
(K) T [K]/(m`gD,k);

8 if f̂S`
(K) � ✓ � "/2 then

9 A A [ (K, fS`
(K))

10 return A;

4.6.1 Implementation, Datasets, Parameters, and Envi-

ronment

We implemented SPRISS as a combination of C++ programs, which perform
the reads sampling and save the sample on a file, and as a modification of
KMC 3 [Kokot et al., 2017]3, a fast and efficient counting k-mers algorithm.
We used KMC 3 with the default option to count canonical k-mers. Note
that our flexible sampling technique can be combined with any k-mer count-
ing algorithm (see Figure 4.1 for results obtained using Jellyfish v. 2.34

as k-mer counter in SPRISS). In our experiments we used the variant of
SPRISS that employs the Poisson approximation for computing SK (see Al-
gorithm 5). SPRISS implementation, information about how to retrieve the
data used in this work, and scripts for reproducing all results are public-
ity available5. We compared SPRISS with the exact k-mer counter KMC
and with SAKEIMA [Pellegrina et al., 2020]6, the state-of-the-art sampling-
based algorithm for approximating frequent k-mers. In all experiments we
fix � = 0.1 and " = ✓� 2/tD,k. If not stated otherwise, we considered k = 31

3Available at https://github.com/refresh-bio/KMC
4Available at https://github.com/gmarcais/Jellyfish
5Available at https://github.com/VandinLab/SPRISS
6Available at https://github.com/VandinLab/SAKEIMA
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and ` = b0.9/(✓gD,k)c in our experiments. For SAKEIMA, as suggested
in [Pellegrina et al., 2020] we set the number gSK of k-mers in a bag to be
gSK = b0.9/✓c. We remark that a bag of reads of SPRISS contains the same
(expected) number of k-mers positions of a bag of SAKEIMA; this guar-
antees that both algorithms provide outputs with the same guarantees, thus
making the comparison between the two methods fair. To assess SPRISS in
approximating frequent k-mers, we considered 6 large metagenomic datasets
from the Human Microbiome Project (HMP)7, each with ⇡ 108 reads and
average read length ⇡ 100. The characteristics of the HMP datasets are
reported in Table 4.1.

dataset label tD,k |D| maxni avgni

SRS024075(s) HMP1 8.82 · 109 1.38 · 108 95 93.88
SRS024388(s) HMP2 7.92 · 109 1.20 · 108 101 96.21
SRS011239(s) HMP3 8.13 · 109 1.24 · 108 101 95.69
SRS075404(t) HMP4 7.75 · 109 1.22 · 108 101 93.51
SRS043663(t) HMP5 9.15 · 109 1.31 · 108 100 100.00
SRS062761(t) HMP6 8.26 · 109 1.18 · 108 100 100.00

Table 4.1: HMP datasets for our experimental evaluation. For each dataset
D the table shows: the dataset name and site ((s) for stool, (t) for tongue
dorsum); its corresponding label on figures; the total number tD,k of k-mers
(k = 31) in D; the number |D| of reads it contains; the maximum read length
maxni = maxi{ni|ri 2 D}; the average read length avgni =

Pn
i=1 ni/n.

4.6.2 Approximation of Frequent k-mers

In this section we first assess the quality of the approximation of FK(D, k, ✓)
provided by SPRISS, and then compare SPRISS with SAKEIMA.

We use SPRISS to extract approximations of frequent k-mers on 6 datasets
from HMP for values of the minimum frequency threshold ✓ 2 {2.5 · 10�8

, 5 ·
10�8

, 7.5 · 10�8
, 10�7}. The output of SPRISS satisfied the guarantees from

Proposition 11 for all 5 runs of every combination of dataset and ✓. In all cases
the estimated frequencies provided by SPRISS are close to the exact ones (see
Figure 4.2a for an example). In fact, the average (across all reported k-mers)
absolute deviation of the estimated frequency w.r.t. the true frequency is
always small, i.e. one order of magnitude smaller than ✓ (Figure 4.2b), and

7
https://hmpdacc.org/HMASM/
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Figure 4.1: As function of ✓ and for each dataset D (see Table 4.1), run-
ning times to approximate FK(D, k, ✓) with SPRISS using Jellyfish (SP-
Jellyfish), with the state-of-the-art sampling algorithm SAKEIMA (SK),
and for exactly computing FK(D, k, ✓) with Jellyfish (E-Jellyfish).

the maximum deviation is very small as well (Figure 4.3b). In addition, even
if the values of ✓̃ (see i) in Proposition 11) are always between 4.15 ·10�6 and
1.81 · 10�5, SPRISS results in a very low false negative rate (i.e., fraction of
k-mers of FK(D, k, ✓) not reported by SPRISS), which is always been below
0.012 in our experiments (see Figure 4.3a).

In terms of running time, SPRISS required at most 64% of the time re-
quired by the exact approach KMC (Figure 4.2c). In addition, SPRISS used
at most 30% of the RAM memory required by the exact approach KMC.
This is due to SPRISS requiring to analyze at most 34% of the entire dataset
(Figure 4.2d). Note that the use of collections of bags of reads is crucial to
achieve useful sample size, i.e. lower than the whole dataset. In fact, the sam-
ple sizes obtained from less sophisticated statistical tools, e.g., Hoeffding’s
inequality combined with union bound (see Section 4.3), and pseudodimen-
sion without collections of bags (see Section 4.4), are much greater than the
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(a) (b)

(c) (d)

Figure 4.2: (a) k-mers exact frequency and frequency estimated by SPRISS
for dataset SRS024075 and ✓ = 2.5 · 10�8. (b) Average deviations between
exact frequencies and frequencies estimated by SPRISS (SP) and SAKEIMA
(SK), for various datasets and values of ✓. (c) Running time of SPRISS
(SP), SAKEIMA (SK), and the exact computation (E) - see also legend of
panel 4.2b). (d) Fraction of the dataset analyzed by SPRISS (SP) and by
SAKEIMA (SK).

dataset size:⇡ 1016 and ⇡ 1015, respectively, which are useless sample sizes
for datasets of ⇡ 108 reads. These results show that SPRISS obtains very
accurate approximations of frequent k-mers in a fraction of the time required
by exact counting approaches.
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We then compared SPRISS with SAKEIMA. In terms of quality of ap-
proximation, SPRISS reports approximations with an average deviation lower
than SAKEIMA’s approximations, while SAKEIMA’s approximations have
a lower maximum deviation. However, the ratio between the maximum de-
viation of SPRISS and the one of SAKEIMA are always below 2. Overall,
the quality of the approximation provided by SPRISS and SAKEIMA are,
thus, comparable. In terms of running time, SPRISS significantly improves
over SAKEIMA (Figure 4.2c), and processes slightly smaller portions of the
dataset compared to SAKEIMA (Figure 4.2d).

Summarizing, SPRISS is able to report most of the frequent k-mers and
estimate their frequencies with small errors, by analyzing small samples of
the datasets and with significant improvements on running times compared
to exact approaches and to state-of-the-art sampling algorithms.
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(a)

(b)

Figure 4.3: As function of ✓ and for every dataset D: (a) False negatives rates,
i.e. the fraction of k-mers of FK(D, k, ✓) not reported by the approxima-
tion sets, obtained using SPRISS (SP) and SAKEIMA (SK); (b) Maximum
deviations between exact and unbiased observed frequencies provided by the
approximations sets of SPRISS (SP) and SAKEIMA (SK).
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Chapter 5

Applications of SPRISS

5.1 Introduction
The analysis of k-mers (and of their frequencies) of a dataset of reads is of
fundamental importance in several applications, e.g., in [Wood and Salzberg,
2014, Audoux et al., 2017, Li and Waterman, 2003, Liu et al., 2017, Patro
et al., 2014, Zhang and Wang, 2014, Solomon and Kingsford, 2016, Kelley
et al., 2010, Salmela et al., 2016] (see Section 5.1.2). As stated in Section
4.1, some applications like the comparison of abundances in metagenomic
datasets [Benoit et al., 2016, Danovaro et al., 2017, Dickson et al., 2017, Pel-
legrina et al., 2020] or the discovery of k-mers discriminating between two
datasets [Ounit et al., 2015, Liu et al., 2017] require to identify the k-mers
that appear in the dataset with relatively high frequency, i.e. frequent k-
mers. Since the exact identification of frequent k-mers is highly demanding
(see Section 4.6), a valid strategy to speed up such applications is to consider
an efficiently computable rigorous approximation of the frequent k-mers ob-
tained from a sample of the whole dataset, which can be computed, e.g.,
with our algorithm SPRISS described in Chapter 4. Thus, in this Chapter
we show the benefits of using the approximation of frequent k-mers obtained
by SPRISS in three applications: the comparison of metagenomic datasets,
the extraction of discriminative k-mers, and SNP genotyping. In all these
applications SPRISS significantly speeds up the analysis, while providing the
same insights obtained by the analysis of the whole data.
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5.1.1 Our Contributions

In this Chapter we present several applications of SPRISS. In particular:

• We evaluate SPRISS’s performance for the comparison of metagenomic
datasets. We use SPRISS’s approximations to estimate abundance
based distances (e.g., the Bray-Curtis distance) between metagenomic
datasets, and show that the estimated distances can be used to obtain
informative clusterings of metagenomic datasets from the Sorcerer II
Global Ocean Sampling Expedition [Rusch et al., 2007]1 in a fraction
of the time required by the exact distances computation (i.e., based on
exact k-mers frequencies).

• We test SPRISS to discover discriminative k-mers between pairs of
datasets. We show that SPRISS identifies almost all discriminative
k-mers from pairs of metagenomic datasets rom [Liu et al., 2017] and
the Human Microbiome Project (HMP)2, with a significant speed-up
compared to standard approaches.

• We evaluate SPRISS for approximate SNP genotyping, by combining
the sampling scheme of SPRISS with previously proposed genotyping
algorithms. We show that we achieve accurate approximations of the
most common performance measures (precision, sensitivity, and F-
measure), obtaining a significant speed-up of the genotyping process
on an llumina WGS dataset from the Genome In A Bottle (GIAB)
consortium [Zook et al., 2014].

5.1.2 Related Works

Given a dataset of reads, the identification of k-mers (and of the frequen-
cies) is crucial in several applications, including the comparison of datasets
and reads classification in metagenomics [Wood and Salzberg, 2014], the
characterization of variation in RNA-seq data [Audoux et al., 2017], the
analysis of structural changes in genomes [Li and Waterman, 2003, Liu
et al., 2017], RNA-seq quantification [Patro et al., 2014, Zhang and Wang,
2014], fast search-by-sequence over large high-throughput sequencing repos-
itories [Solomon and Kingsford, 2016], genome comparison [Sims et al.,
2009], and error correction for genome assembly [Kelley et al., 2010, Salmela

1
https://www.imicrobe.us

2
https://hmpdacc.org/HMASM/
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et al., 2016]. In particular, for a given minimum frequency threshold,
frequent k-mers are important for comparing abundances in metagenomic
datasets [Benoit et al., 2016, Danovaro et al., 2017, Dickson et al., 2017, Pel-
legrina et al., 2020] and the discovery of k-mers discriminating between two
datasets [Ounit et al., 2015, Liu et al., 2017]. In this work we consider the
use of SPRISS to speed up the computation of the Bray-Curtis distance be-
tween metagenomic datasets, the identification of discriminative k-mers, and
the SNP genotyping process. Computational tools for these problems have
been recently proposed [Benoit et al., 2016, Saavedra et al., 2020, Sun and
Medvedev, 2018]. These tools are based on exact k-mer counting strategies,
and the approach we propose with SPRISS could be applied to such strategies
as well.

5.1.3 Organization of the Chapter

Section 5.2 is dedicated to give information about the implementation of the
applications of SPRISS, the environment used, the values of the parameters
and the datasets used in our tests. In Section 5.3 we evaluate the benefit of
using SPRISS for the comparison of metagenomic datasets. Then, in Section
5.4 we test SPRISS in the identification of discriminative k-mers. Finally, in
Section 5.5 we evaluate the usage of SPRISS for approximate SNP genotyping.

5.2 Implementation, Datasets, Parameters,
and Environment

For all the applications presented in this Chapter, in order to speed up the
analyses, we used our algorithm SPRISS to approximate frequent k-mers.
The environment used, the implementation of SPRISS and the values used
for its parameters are the same as described in Section 4.6.1. Scripts to
reproduce all results and information about how to retrieve the data are
publicly available3.

For the evaluation of SPRISS in comparing metagenomic datasets we used
the HMP datasets (Table 4.1), which we have also used for the experimental
evaluation of SPRISS in Section 4.6, and 37 small metagenomic datasets from
the Sorcerer II Global Ocean Sampling Expedition [Rusch et al., 2007], each

3Available at https://github.com/VandinLab/SPRISS

75

https://github.com/VandinLab/SPRISS


CHAPTER 5. APPLICATIONS OF SPRISS

with ⇡ 104-105 reads and average read length ⇡ 1000 (see Table 5.3). For the
assessment of SPRISS in the discovery of discriminative k-mers we used two
large datasets from [Liu et al., 2017], B73 and Mo17, each with ⇡ 4 ·108 reads
and average read length = 250 (see Table 5.1), and we also experimented
with the HMP datasets. To evaluate the benefits of using SPRISS for SNP
genotyping, we used an Illumina WGS dataset from NA12878, with ⇡ 1.55 ·
109 reads and average read length = 148 (see Table 5.2), available from the
Genome In A Bottle (GIAB) consortium [Zook et al., 2014]. All reported
results are averages over 5 runs.

Table 5.1: B73 and Mo17 datasets for the discriminative k-mers discovery
experiments. For each dataset D the table shows: the dataset name; the total
number tD,k of k-mers (k = 31) in D; the number |D| of reads it contains;
the maximum read length maxni = maxi{ni|ri 2 D}; the average read length
avgni =

Pn
i=1 ni/n.

dataset tD,k |D| maxni avgni

B73 9.92 · 1010 4.50 · 108 250 250
Mo17 9.97 · 1010 4.45 · 108 250 250

Table 5.2: The dataset used for the SNP genotyping experiments. The table
shows: the dataset name (we call it data75x ); the total number tD,k of k-mers
(k = 31) in D; the number |D| of reads it contains; the maximum read length
maxni = maxi{ni|ri 2 D}; the average read length avgni =

Pn
i=1 ni/n; the

coverage.

dataset tD,k |D| maxni avgni coverage
data75x 1.83 · 1011 1.55 · 109 148 148 ⇡ 75x
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Table 5.3: GOS datasets for our experimental evaluation. For each dataset D: the
dataset name; its corresponding label for clustering results of Section 5.3; the total number
tD,k of k-mers (k = 21) in D; the number |D| of reads it contains; the maximum read length
maxni = maxi{ni|ri 2 D}; the average read length avgni =

Pn
i=1 ni/n. Prefix IDs of the

GOS datasets: TO = Tropical Open ocean, TG = Tropical Galapagos, TN = Temperate
North, TS = Temperate South, E = Estuary, NC = Non-Classified.

dataset label tD,k |D| maxni avgni

GS02 TN1 1.26 · 108 1.21 · 105 1349 1058.98
GS03 TN2 6.56 · 107 6.16 · 104 1278 1086.07
GS04 TN3 5.58 · 107 5.29 · 104 1309 1074.83
GS05 TN4 6.47 · 107 6.11 · 104 1242 1079.37
GS06 TN5 6.34 · 107 5.96 · 104 1260 1082.71
GS07 TN6 5.44 · 107 5.09 · 104 1342 1087.30
GS08 TS1 1.35 · 108 1.29 · 105 1444 1062.24
GS09 TS2 8.27 · 107 7.93 · 104 1342 1063.35
GS10 TS3 8.08 · 107 7.83 · 104 1402 1052.62
GS11 E1 1.30 · 108 1.24 · 105 1283 1070.84
GS12 E2 1.33 · 108 1.26 · 105 1349 1078.62
GS13 TS4 1.46 · 108 1.38 · 105 1300 1079.50
GS14 TG1 1.37 · 108 1.28 · 105 1353 1085.58
GS15 TO1 1.35 · 108 1.27 · 105 1412 1083.79
GS16 TO2 1.34 · 108 1.27 · 105 1328 1081.48
GS17 TO3 2.76 · 108 2.57 · 105 1354 1091.92
GS18 TO4 1.53 · 108 1.42 · 105 1309 1096.20
GS19 TO5 1.43 · 108 1.35 · 105 1325 1081.93
GS20 NC1 3.09 · 108 2.96 · 105 1325 1063.42
GS21 TG2 1.40 · 108 1.31 · 105 1334 1088.44
GS22 TG3 1.28 · 108 1.21 · 105 1288 1077.40
GS23 TO6 1.40 · 108 1.33 · 105 1304 1079.48
GS25 NC2 1.27 · 108 1.20 · 105 1288 1075.49
GS26 TO7 1.06 · 108 1.02 · 105 1337 1061.74
GS27 TG4 2.32 · 108 2.22 · 105 1259 1068.65
GS28 TG5 2.01 · 108 1.89 · 105 1295 1084.40
GS29 TG6 1.41 · 108 1.31 · 105 1356 1093.46
GS30 TG7 3.84 · 108 3.59 · 105 1359 1090.61
GS31 TG8 4.52 · 108 4.36 · 105 1341 1057.90
GS32 NC3 1.50 · 108 1.48 · 105 1366 1035.96
GS33 NC4 7.15 · 108 6.92 · 105 1361 1054.10
GS34 TG11 1.39 · 108 1.34 · 105 1308 1058.44
GS35 TG12 1.49 · 108 1.40 · 105 1321 1078.30
GS36 TG13 8.42 · 107 7.75 · 104 1423 1106.00
GS37 TG14 6.73 · 107 6.56 · 104 1244 1045.40
GS47 TG15 6.70 · 107 6.60 · 104 1304 1035.09
GS51 TG16 1.37 · 108 1.28 · 105 1349 1089.27
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5.3 Comparing Metagenomic Datasets
We evaluated SPRISS to compare metagenomic datasets by computing an
approximation to the Bray-Curtis (BC) distance between pairs of datasets
of reads, and using such approximations to cluster datasets.

Let D1 and D2 be two datasets of reads. Let FK1 = FK(D1, k, ✓) and
FK2 = FK(D2, k, ✓) be the set of frequent k-mers respectively of D1 and D2,
where ✓ is a minimum frequency threshold. The BC distance between D1 and
D2 considering only frequent k-mers is defined as BC(D1,D2,FK1,FK2) =
1 � 2I/U , where I =

P
K2FK1\FK2

min{oD1(K), oD2(K)} and U =P
K2FK1

oD1(K) +
P

K2FK2
oD2(K). Conversely, the BC similarity is defined

as 1� BC(D1,D2,FK1,FK2).
We considered 6 datasets from HMP, and estimated the BC distances

among them by using SPRISS to approximate the sets of frequent k-mers
FK1 = FK(D1, k, ✓) and FK2 = FK(D2, k, ✓) for the values of ✓ as in
Section 4.6.2. We compared such estimated distances with the exact BC dis-
tances and with the estimates obtained using SAKEIMA. Both SPRISS and
SAKEIMA provide accurate estimates of the BC distances (see Figure 5.1),
which can be used to assess the relative similarity of pairs of datasets. How-
ever, to obtain such approximations SPRISS requires at most 40% of the time
required by SAKEIMA and usually 30% of the time required by the exact
computation with KMC (Figure 5.2). Therefore SPRISS provides accurate
estimates of metagenomic distances in a fraction of time required by other
approaches.

As an example of the impact in accurately estimating distances among
metagenomic datasets, we used the sampling approach of SPRISS to approxi-
mate all pairwise BC distances among 37 small datasets from the Sorcerer II
Global Ocean Sampling Expedition (GOS) [Rusch et al., 2007], and used such
distances to cluster the datasets using average linkage hierarchical clustering.
The k-mer based clustering of metagenomic datasets is often performed by
using presence-based distances, such as the Jaccard distance [Ondov et al.,
2016], which estimates similarities between two datasets by computing the
fraction of k-mers in common between the two datasets. Abundance-based
distances, such as the BC distance [Benoit et al., 2016, Danovaro et al.,
2017, Dickson et al., 2017], provide more detailed measures based also on the
k-mers abundance, but are often not used due to the heavy computational
requirements to extract all k-mers counts. However, the sampling approach
of SPRISS can significantly speed-up the computation of all BC distances,
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(a) (b)

(c) (d)

Figure 5.1: Comparison of the approximations of the Bray-Curtis distances
using approximations of frequent k-mers sets provided by SPRISS (⇥) and
by SAKEIMA (•) with the exact distances, for: (a) ✓ = 2.5 · 10�8; (b)
✓ = 5 · 10�8; (c) ✓ = 7.5 · 10�8; (d) ✓ = 1 · 10�7.

and, thus, the entire clustering analysis. In fact, for this experiment, the use
of the sampling scheme of SPRISS reduces the time required to analyze the
datasets (i.e., obtain k-mers frequencies, compute all pairwise distances, and
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(a)

Figure 5.2: Running time to approximate BC distances cu-
mulative for all pairs of HMP datasets D1 and D2 in
{HMP1,HMP2,HMP3,HMP4,HMP5,HMP6} (see Table 4.1) with SPRISS,
with SAKEIMA, and the exact approach.

obtain the clustering) by 62%.
We then compared the clustering obtained using the exact Jaccard dis-

tance (Figure 5.3a), the exact BC distance (Figure 5.3b), and the estimates
of the BC distance (Figure 5.3c) obtained using only 50% of reads in the
GOS datasets, which are assigned to groups and macro-groups according to
the origin of the sample [Rusch et al., 2007]. Even if the estimated BC dis-
tance is computed using only a sample of the datasets, while the Jaccard
distance is computed using the entirety of all datasets, the use of approxi-
mate BC distances leads to a better clustering in terms of correspondence of
clusters to groups, and to the correct cluster separation for macro-groups. In
addition, the similarities among datasets in the same group and the dissim-
ilarities among datasets in different groups are more accentuated using the
approximated BC distance. In fact, the ratio between the average approx-
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imate BC similarity among datasets in the same group and the analogous
average Jaccard is in the interval [1.25, 1.75] for all groups. In addition,
the ratio between i) the difference of the average approximate BC similarity
within the tropical macro-group and the average approximate BC similarity
between the tropical and temperate groups, and ii) the analogous difference
using the Jaccard similarity is ⇡ 1.53. These results tell us the approximate
BC-distances, computed using only half of the reads in each dataset, increase
by ⇡ 50% the similarity signal inside all groups defined by the original study
[Rusch et al., 2007], and the dissimilarities between the two macro-groups
(tropical and temperate).

To conclude, the estimates of the BC similarities obtained using the sam-
pling scheme of SPRISS allows to better cluster metagenomic datasets than
using the Jaccard similarity, while requiring less than 40% of the time needed
by the exact computation of BC similarities, even for fairly small metage-
nomic datasets.
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(a) (b)

(c)

Figure 5.3: Average linkage hierarchical clustering of GOS datasets using: (a)
exact Jaccard similarity; (b) exact Bray-Curtis (BC) similarity; (c) estimates
of the BC similarity obtained using the sampling scheme of SPRISS with 50%
of the data. Prefix IDs of the GOS datasets: TO=Tropical Open ocean,
TG=Tropical Galapagos, TN=Temperate North, TS=Temperate South,
E=Estuary, NC=Non-Classified.
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5.4 Approximation of Discriminative k-mers
In this section we assess SPRISS for approximating discriminative k-mers in
metagenomic datasets.

In particular, we consider the following definition of discriminative k-
mers [Liu et al., 2017]. Given two datasets D1,D2, and a minimum fre-
quency threshold ✓, we define the set DK(D1,D2, k, ✓, ⇢) of D1-discriminative
k-mers as the collection of k-mers K for which the following conditions
both hold: 1. K 2 FK(D1, k, ✓); 2. fD1(K) � ⇢fD2(K), with ⇢ =
2. Note that the computation of DK(D1,D2, k, ✓, ⇢) requires to extract
FK(D1, k, ✓) and FK(D2, k, ✓/⇢). SPRISS can be used to approximate the
set DK(D1,D2, k, ✓, ⇢), by computing approximations FK(Di, k, ✓) of the
sets FK(Di, k, ✓), i = 1, 2, of frequent k-mers in D1,D2, and then report-
ing a k-mer K as D1-discriminative if the following conditions both hold:
1. K 2 FK(D1, k, ✓); 2. K /2 FK(D2, k, ✓), or fS1

`
(K) � ⇢fS2

`
(K) when

K 2 FK(D2, k, ✓).
To evaluate such approach, we considered two datasets from [Liu et al.,

2017], and ✓ = 2·10�7 and ⇢ = 2, which are the parameters used in [Liu et al.,
2017]. We used the sampling approach of SPRISS with ` = b0.02/(✓gD,k)c
and ` = b0.04/(✓gD,k)c, resulting in analyzing of 5% and 10% of all reads,
to approximate the sets of discriminative D1-discriminative and of D2-
discriminative k-mers. When 5% of the reads are used, the false negative
rate is < 0.028, while when 10% of the reads are used, the false negative rate
is < 0.018. The running times are ⇡ 1130 sec. and ⇡ 1970 sec., respectively,
while the exact computation of the discriminative k-mers with KMC requires
⇡ 104 sec. (we used 32 workers for both SPRISS and KMC). Similar results
are obtained when analyzing pairs of HMP datasets, for various values of ✓
(Figure 5.4 and Figure 5.5).

These results show that SPRISS can identify discriminative k-mers with
small false negative rates while providing a remarkable improvement in run-
ning time compared to the exact approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: As function of ✓, false negatives rate, i.e. the fraction of k-mers
of DK(D1,D2, k, ✓, ⇢) not included in its approximation DK(D1,D2, k, ✓, ⇢),
obtained using SPRISS for all pairs of HMP datasets (see Table 4.1).
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(a)

Figure 5.5: Running times to compute DK(D1,D2, k, ✓, ⇢) us-
ing SPRISS against the one required to compute the exact set
DK(D1,D2, k, ✓, ⇢), cumulative for all pairs of HMP datasets D1 and
D2 in {HMP1,HMP2,HMP3,HMP4,HMP5,HMP6} (see Table 4.1).
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5.5 SNP Genotyping
In this section we evaluate SPRISS for approximate SNP genotyping. In
particular, we assess the use of the sampling scheme of SPRISS in combi-
nation with previously proposed algorithms for SNP genotyping in terms of
precision, sensitivity, and F-measure.

The genotyping algorithms we used are the standard pipeline (BWA [Li
and Durbin, 2009] as aligner, and BCFtools [Li, 2011] as variant caller),
and VarGeno [Sun and Medvedev, 2018]. We considered hg19 as reference
genome, and dbSNP [Sherry, 2001] as reference SNP database. We used the
gold standard of NA12878 individual provided by the Genome In A Bottle
(GIAB) consortium [Zook et al., 2014]. The Illumina WGS dataset D of
reads from NA12878 we used has a coverage of ⇡ 75x. We used the sampling
scheme of SPRISS to create samples of 12.5%,25%,50%, and 75% of reads of
D. The standard pipeline was run with 64 threads. When evaluating the
running time, we do not include the time to obtain the sample, since once
the sample is created it can be reused several times. Moreover, the time to
obtain the sample is always a small fraction of the overall execution time
(e..g, even for a sample contaning 75% of reads of D the required time is
< 3000 sec).

The performance measures of the standard pipeline on D are the follow-
ing: 0.961 of precision, 0.959 of sensitivity, and 0.960 of F-measure. Figure
5.6 and Figure 5.7 describe the running times and the performance measures
of the standard pipeline using samples of D from SPRISS. Considering a
sample of just 25% of reads of D, the sensitivity and the F-measure decrease,
respectively, by 0.02 and 0.004, while the precision increases by 0.012. The
increment of the precision is due to a decrement in the number of false posi-
tive calls, which is achieved by the reads sampling of SPRISS that filters out
low coverage regions and erroneous k-mers. The speed-up of using a sample
of 25% of reads of D instead of the entire dataset D is ⇡ 3.9x.

VarGeno achieves on D 0.974 of precision, 0.585 of sensitivity, and 0.731 of
F-measure. With a sample from SPRISS of just 25% of reads of D, we obtain
a decrement of the performance of VarGeno of 0.003 in precision, 0.015 in
sensitivity, 0.013 in F-measure, and a speed-up of ⇡ 4.5x with respect to
the time required to analyze the entire dataset D. The results for the other
sample sizes are described in Figure 5.6 and Figure 5.7.

To conclude, the sampling scheme of SPRISS is very useful to remarkably
speed up genotyping algorithms, while achieving very small decrements in
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the performance measures, and even improving the precision in some cases.

(a)

(b)

Figure 5.6: As function of the sample rate, running time of combining the
sampling scheme of SPRISS with the standard pipeline (a) and VarGeno (b)
in the SNP genotyping process.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: As function of the sample rate: precision, sensitivity, and F-
measure resulting by combining the sampling scheme of SPRISS with the
standard pipeline (resp. (a),(c),(e)) and with VarGeno (resp. (b),(d),(f)) in
SNP genotyping.
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Chapter 6

Conclusions

In this Chapter we end this Thesis by summarizing our contributions and
discussing some possible future directions. In this Thesis we present novel
efficient and rigorous approximation algorithms for mining interesting pat-
terns from sequential data, leveraging on strong theoretical guarantees that
we proved using tools from statistical learning theory.

In Chapter 3, we studied the task of mining true frequent sequential
patterns. We defined rigorous approximations and designed efficient algo-
rithms to extract such approximations with high confidence using an ad-
vanced concept from statistical learning theory, i.e., the Rademacher com-
plexity. In particular, we proved the first efficient computable upper bound
of the Rademacher complexity of sequential patterns, and we also derived a
strategy to approximate it. Both of them, i.e., the upper bound and the ap-
proximation of the Rademacher complexity of sequential patterns, are useful
to upper bound the maximum deviation between the true frequencies of se-
quential patterns and their estimates. Our extensive experimental evaluation
shows that our algorithms obtain high-quality approximations, even better
than guaranteed by their theoretical analyses. In addition, our evaluation
shows that the upper bound on the maximum deviation computed using the
approximation of the Rademacher complexity allows to obtain better results
compared to the ones obtained using the upper bound of the Rademacher
complexity. In this scenario of mining true frequent sequential patterns, a
possible future direction could be the application of recent results on sharp
and uniformly valid confidence bounds based on the Monte Carlo empirical
Rademacher complexity [Pellegrina, 2020, Pellegrina et al., 2022] in order to
make the upper bound on the maximum deviation sharper and, consequently,
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to improve the quality of the approximations.
In Chapter 4, we studied the task of mining frequent k-mers. We pre-

sented SPRISS, an efficient algorithm to compute rigorous approximations
of frequent k-mers and their frequencies by sampling reads. SPRISS builds
on the pseudodimension, an advanced concept from statistical learning the-
ory. In particular, we proved an upper of the pseudodimension of k-mers
in reads, which is useful to provide a sample size that is required to obtain
high-quality approximations. In addition, we showed that less sophisticated
tools like Hoeffding’s inequality combined with a union bound, and the VC-
dimension, are not sufficient to provide practical sample sizes. Our extensive
experimental evaluation shows that SPRISS outputs high-quality estimates
of the frequent k-mers, while vastly speeding-up exact approaches by an-
alyzing only a sample of the entire dataset. In Chapter 5, we presented
several applications of SPRISS in bioinformatics. In particular, we applied
SPRISS to speed-up the comparison of metagenomic datasets, the compu-
tation of discriminative k-mers, and the SNP genotyping, showing that we
achieve high-quality estimates of the results that would be obtained using
exact approaches (i.e., analyzing the entire datasets). In this context of min-
ing frequent k-mers, a possible future direction could be to investigate if the
study of the Rademacher complexity, which provides data-dependent bounds,
of k-mers in datasets of reads helps in approximating frequent k-mers with
better quality and sharper theoretical guarantees. In addition, SPRISS could
be used to speed-up several bioinformatic tools that rely on the identifica-
tion of frequent or discriminative k-mers, e.g., CLARK [Ounit et al., 2015],
a tool for the classification of metagenomic and genomic sequences using
discriminative k-mers.
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