

SPRISS: Approximating Frequent k-mers by Sampling Reads, and Applications

<u>**D.**</u> Santoro, L. Pellegrina, and F. Vandin University of Padova

 $diego.santoro@phd.unipd.it \ , \{leonardo.pellegrina, fabio.vandin\}@unipd.it$

Background

Dataset *D* **of reads**

>seq1_RTW_read1 ATCGACGTACGATGCACGCATGACG >seq1_RTW_read2 ACGATGCATTGCATCGACTCGAATG >seq1_RTW_read3 TTGCTAGTGTACCTGATGCATTGCA >seq1_RTW_read4 CGACTCGAATACGATGCATTGCATG >seq1_RTW_read5 GTACCTGATTGCTAGTTGCATTGCA

k-mer *P*: substring of length *k* of a read

frequency $f_D(P)$ of *P* on *D* = fraction of *k*-mers of *D* equal to *P*

The study of k-mers and their frequencies from datasets of reads is a crucial step for:

- Comparison of metagenomic datasets;
- Read classification in metagenomics;
- Genome comparison;
- Error correction for genome assembly;

- ...

Motivation

Exact *k*-mer counters exist 🙂

```
Jellyfish (Marçais et al., 2011)
BFCounter (Melsted and Pritchard, 2011)
DSK (Rizk et al., 2013)
KAnalyze (Audano and Vannberg, 2014)
Turtle (Roy et al., 2014)
KMC (Kokot et al., 2017)
Squeakr (Pandey et al., 2017)
```

★ counting <u>all</u> k-mers is computationally expensive on massive modern datasets

For some applications:

•••

- Comparisons of metagenomic datasets
- Discovery of discriminative k-mers

just frequent *k*-mers are of interest

Motivation

Frequent *k*-mer *P*: given $\theta \in (0,1]$, *P* appears in *D* with frequency $f_D(P) \ge \theta$

[¬]Frequent k-mer counting problem

Def.

Given θ , extract frequent k-mers (and their frequencies) $FK(D, k, \theta)$ from D

computationally expensive approximation methods on massive modern datasets 🙁

State of the art

Frequent k-mers approximations with theoretical guarantees: relatively unexplored

SAKEIMA [Pellegrina, Pizzi, Vandin. RECOMB 2019 - JCB 2020]

- Approximations of frequent *k*-mers with guarantees by *sampling k-mers*
- Require to scan the entire dataset *D*
- Needs to be reimplemented for more efficient exact *k*-mer counters (It is built on *Jellyfish*)

This work, SPRISS

- Approximations of frequent *k*-mers with guarantees by *sampling reads*
- Require to scan just a sample of reads of *D*
- No need to reimplement it for more efficient exact *k*-mer counters

Computational problem

Computational problem

Input: D, k, θ , ε , δ

Output: \varepsilon-approximation of frequent *k*-mers *FK*(*D*, *k*, θ) with probability $\geq 1 - \delta$

Def.

Given $\varepsilon \in (0,\theta)$, a set $A = \{(P, f_P)\}$ is an ε -approximation of $FK(D, k, \theta)$ if:

- 1. *A* contains **no false negatives**
- 2. A does not contain k-mers s.t. $f_D(P) < \theta \varepsilon$
- 3. All *k*-mers in *A* are s.t. $|f_D(P) f_P| \le \varepsilon/2$

SPRISS: main idea

Approximation *A* of frequent *k*-mers $FK(D, k, \theta)$ by analyzing a **sample** *S* of *D*

Challenges:

- **1.** Find a rigorous relation between *A* and $FK(D, k, \theta)$.
- **2**. Identify a sample size which is sufficient to guarantee good estimates from *S*.
- **3**. Reads introduce dependencies among *k*-mers

Sampling strategy: sample *S* is a collection of *m* bags of ℓ reads sampled independently and uniformly at random, with replacement, from *D*

P = AAC

 $f_S(P) \propto \#$ occurrences of P in S (i.e., 4)

 $\hat{f}_{S}(P) \propto \#$ bags where *P* appears (i.e., 2)

Main steps:

- **1.** Compute sample *S*
- 2. Compute $f_S(P)$ and $\hat{f}_S(P)$ using any exact k-mer counter
- 3. Output $A = \{(P, f_S(P)) : \hat{f}_S(P)) \ge \theta \varepsilon/2\}$

Main contribution

Proof: based on the *pseudodimension,* a key tool from statistical learning theory, of k-mers

Experimental results

Implementation: C++ (based on *KMC* exact counter) **Machine**: 512 GB of RAM and 2 Intel(R) Xeon(R) CPU E5-2698 v3 @2.3GHz

Experimental results:

- 1. Accuracy of the estimates
- 2. **Resources**
- 3. Comparing metagenomic datasets
- 4. Discriminative k-mers approximations

6 large datasets from Human Microbiome Project (HMP) - $\approx 10^8$ reads k = 31

 $SP = SPRISS \qquad SK = SAKEIMA (built on Jellyfish) \qquad E = exact approach (KMC)$

SPRISS analyzes at most 34% of each dataset D

Comparing metagenomic datasets

Bray-Curtis (BC) distance of D_1 and D_2 as a function of frequent *k*-mers

Estimation of BC by using approximations of $FK(D_1, k, \theta)$ and $FK(D_2, k, \theta)$

Comparing metagenomic datasets

37 datasets from Global Ocean Sampling (GOS) Expedition $- \approx 10^5$ reads k = 21

Inside-vs-outside cluster signal increases of 50% using BC estimates SPRISS requires 40% of the time of exact BC approach

Discriminative k-mers

Estimation of discriminative *k*-mers by using SPRISS's approximations

2 large datasets from (Liu et al., 2017) - $\approx 4 \times 10^8$ reads, $k = 31, \rho = 2$

Using just 5% of reads of D_1 and D_2

- false negative rate is < 0.03
- Running time gain: 90%

Acknowledgements:

Leonardo Pellegrina

Fabio Vandin

Fundings:

Thanks for your attention!

SPRISS available at:

https://github.com/VandinLab/SPRISS https://arxiv.org/abs/2101.07117

Recipe of SPRISS:

3 ounces of Prosecco 2 ounces of Aperol 1 ounce of Club Soda Garnish: orange slice

https://www.liquor.com/recipes/aperol-spritz/

Diego Santoro

diego.santoro@phd.unipd.it

University of Padova